Assimilation of SWOT to map geostrophic and internal tide currents

UGA

Valentin BELLEMIN-LAPONNAZ¹, Emmanuel COSME¹, Florian LE GUILLOU², Clément UBELMANN³, Eric BLAYO⁴ ¹ : IGE, Université Grenoble Alpes ; ² : ESA, Frascati ; ³ : Datlas, Grenoble ; ⁴ : LJK, Université Grenoble Alpes

Abstract

The SWOT mission extends the observability of Sea Surface Height (SSH) to the submesoscale signals (<50 km), whereas conventional nadir altimetry is currently limited to the large mesoscale range (150-200 km). At the fine scales observed by SWOT, SSH variations are primarily driven by two dynamics - nearly geostrophic **Balanced Motions** (BMs) and wave motions due to Internal Tides (ITs). Reconstructing and separating BMs and **ITs** contributions to SSH variations is essential for marine applications.

Method

Fig1 : Balanced Motion and Internal Tide filtered from MITgcm LLC4320 hourly outputs.

We introduce an innovative method to map and separate BMs and ITs (1st mode) SSH signals from realistic altimetric observations including SWOT. It assumes that the SSH η results from the additive contribution of BMs (η_{BM}) and ITs (η_{IT}).

 $\boldsymbol{\eta} = \boldsymbol{\eta}^{BM} + \boldsymbol{\eta}^{IT} = M^{BM}(\boldsymbol{\Phi}^{BM}) + M^{IT}(\boldsymbol{\phi}^{IT})$

Each of these components is being simulated by a separate dynamical model M^{BM} and M^{IT} , controlled by a specific set of parameters Φ^{BM} and Φ^{IT} . The separation problem is expressed as the identification of the optimal set of parameters (Φ^{BM}, Φ^{IT}) that leads to the best fit between total gridded SSH η and the altimetric SSH observations η_{OBS} . This is formulated as a **4DVar data assimilation** problem, with the cost function :

$$J(\boldsymbol{\Phi}^{BM}, \boldsymbol{\Phi}^{IT}) = \left\| \boldsymbol{\Phi}^{BM} - \boldsymbol{\Phi}^{BM}_{b} \right\| + \left\| \boldsymbol{\Phi}^{IT} - \boldsymbol{\Phi}^{IT}_{b} \right\| + \left\| \boldsymbol{\eta} - \boldsymbol{\eta}_{OBS} \right\|$$

Experimental setup (Hawai'i)

Observing System Simulation Experiment (OSSE) is carried out. MITgcm LLC4320 (1/48° resolution, w. tidal forcing) simulation is the reference. It is used to simulate SSH observations inputs for mapping, and as a baseline to evaluate SSH mapping results. A filter is applied to SSH fields to separate BMs and ITs for specific evaluation (cf. Fig1). For ITs the 1st baroclinic mode is extracted (cf. Fig3).

Results & Conclusion

Actual developments are focusing on setting up the IT generation control over IT production sites (i.e. strong bathymetry gradient and tidal currents). Hawai'i has been chosen as a study zone (cf. Fig4).

An **imaginary SWOT 1-day repeat crossover** is implemented over Hawai'i by shifting orbit coordinates, in addition to **5 Nadir altimeters** (Alt,C2, J3, S3A&B) (cf. Fig3). The goal is to study the ability of SWOT + Nadirs to reconstruct the ITs around a generation site.

170°W 165°W 160°W

Fig5 : First results over Californian SWOT calibration site of separated BM/IT <u>SSH mapping obtained in a simplified case (F. Le Guillou). ITs are controlled at</u> the border with boundary conditions (entering waves only).

First results prove the feasibility of the IT/BM separation method. They were carried out over Californian Current System (cf. Fig5) in simplified configuration. Aim is to go toward a global mapping of BMs and ITs by including complexity related to

Actual step deals with the reconstruction of 1st mode ITs around generation sites.

Future developments will include the separation of ITs and BMs in a more realistic

Abbreviations **BM** : Balanced Motion – **IT** : Internal Tide – **SSH** : Sea Surface Height