
Chew Bahir

Figure | 87Sr/86Sr from bones (blue), ostracods (green) and calcite crystals (orange) extracted from cores CB01, CB03, CB05, CB06, and 
CHB14-1A in comparison to K-XRF data (Förster et al., 2015, QSR; Trauth et al., 2018, Quat. Research) from each core. Errorbars of Sr-isoto-
pe values are equal or smaller than the date points. Parallel measurements on bones, ostracods and calcite crystals revealed similar
values (correlation 0.977) showing the robustnes of the proxy. Larger discrepancies are usually seen during supposedly dry intervals, when
most likely several small ponds prevailed instead of one uniform lake. African humid period (AHP), Younger dryas (YD) and Last glacial maxi-
mum (LGM) are shown for reference, while the timing of Heinrich events H2–H6 should be viewed as approximative.

Figure | Comparison of our results from the 87Sr/86Sr project (purple line) with other regional 
and global paleo-climate records. Conclusion | The comparison suggests, that 87Sr/86Sr in the 
aquatic microfossils and thus the hydrology of Chew Bahir seem to follow glacial-interglacial 
cycles, rather than orbital parameters. Furthermore, Chew Bahir’s 87Sr/86Sr react very sensitively 

Younger Dryas (YD). While being not in phase with precession and thus insolation, their forced 
long-term variations, such as the AHP, are also expressed in the Chew Bahir 87Sr/86Sr, marked by 
a rather abrupt onset, with a pronounced long-term decrease in 87Sr/86Sr. 

Introduction | Analysis of the ICDP-Chew Bahir drill core CHB14 (top left) reveales that over the past 620 
ka phases of environmental stability and instability occured contemporaneously with milestones in 
human history, including pulsed dispersal events out of Africa coinciding with potential humid periods. 
Although proxies in Chew Bahir sediments have been intensely tested for their reliability we still lack 
quantitative information on water availability and an understanding of the driving and competing me-
chanisms. Here we present 87Sr/86Sr record from aquatic microfossils in the sediments, that are 
hypothesized to record water provenance. During major wet periods, Lakes Chamo-Abaya, located in a 
volcanic rocks catchment (top right) (bottom), dominated by a 

87Sr/86

aquatic microfossils living in the corresponding water bodies. 
2022, QSR; Junginger & Trauth, 2013, GLOPACHA).
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Figure | Cross plot of 87Sr/86Sr and 7/Sr (ppb) showing the 
end-member mixing zone for Lake Chew Bahir  (Markowska et al. 
2022, QSR)

Picture | Water sampling in the Chew Bahir basin 2018.

Figure | 87Sr/86Sr ratios measured on leached calcite crystals, ostracods bones. All samples were
chemical prepared in a clean laboratory and measured by Thermal ionization mass spectrometry (TIMS)
in Amsterdam or Mainz.
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