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Years of research have led to a rich model hierarchy for ENSO
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What we want from these models is to correctly “reproduce ENSO”
to better understand and predict the phenomenon

But what does “reproducing ENSO" actually mean?
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Spatial patterns? Autocorrelation function? Power spectrum?



Dynamical systems view of ENSO

Nino 3.4 1982-2023 (Butterworth filtered)
NOAA OI SST V2 High Resolution Dataset
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e system’s phase space by embedding
om0 e SRS observable (X), taking delayed samples of one

only time series. The theorem proves that this
embedding will have the same topological
properties as the real phase space.
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Dynamical systems view of ENSO

Nino 3.4 1982-2023 (Butterworth filtered)
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Embedded time series

Taken's theorem allows us to recover a
_ N system’s phase space by embedding
o 00,20 e SRS observable (X), taking delayed samples of one
‘ - only time series. The theorem proves that this

embedding will have the same topological
properties as the real phase space.

Topological equivalence in the Lorenz attractor

SUGIHARA et al. (2012)
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Dynamical systems view of ENSO

Nino 3.4 1982-2023 (Butterworth filtered)
NOAA OI SST V2 High Resolution Dataset
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Embedded time series

Taken's theorem allows us to recover a
A N system’s phase space by embedding
o 00,20 I A - observable (X), taking delayed samples of one
(@ only time series. The theorem proves that this

embedding will have the same topological
properties as the real phase space.

Topological equivalence in the Lorenz attractor

SUGIHARA et al. (2012)
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the observed attractor. The periods are multiples of 365 days
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In agreement with an annual periodic forcing being an
important part of the dynamics, we expect can expect
subharmonics to appear.
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We analyze if this dynamics is reproduced by state of the art coupled models and use long and multiple simulations to have an estimate

of the way these periodic orbits are visited in a fully coupled G IO ba | Cl | M ate M Od el
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7



- 0 i 2 3 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A : s e e e e IS B e e

L = . . . . . o S . o 25: .

33' =G S o 5 = T - h . ST

m 2- —E = S - " - 5 - s

1 . ey o _ M am g ) T T

Eo : 2 3 ' :

— i [T =365 days] 1000 2000

; -
simulacién #1 3.0

.
K
O |75

5.0

; -
simulacion #2 00

&

simulacion #4

27 5"‘ 27 5"‘ 27 5”‘7 27 5:
T T T
25.0% 2.0 250%™
30.0 300 30.0
27 275 27

5 5
305 2. 505 2. 505
00 4 K 00 & 027'530 0o

simulacion #8

simulacion #5 3 simulacion #6 0.0 simulacion #7 0.0

simulacion #9

&

e = = -
275 27.5% 2.5} é) 275 21. 5"‘
25.0% 5.0% 25.0™ 50" 5.0
300 300 30.0 30.0
7.5 275 275 275
*

7
505 25 505 P53
> 027,530 0w °z7,530

simulacion #1¢

: CESM2

T 11 simulations
Bt consistently show

periodic orbits
with periods of nT
with T=365 days

250’\ 250275



Tosum up

From a dynamical systems perspective, a good ENSO model should have effective
dimension 3 and unstable periodic orbits in its attractor with periods nT with T =1 year

CESM2 is able to capture this dynamics



What if | told you that with this simple equation,
we can recover this behaviour?
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Takens Bogdanov bifurcation with periodic forcing
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Years of research have led to a rich model hierarchy for ENSO

DEPTH ANOMALY
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What we want from these models is to correctly “reproduce ENSO
to better understand and predict the phenomenon
But what does “reproducing ENSO" actually mean?
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CO' A p | eXIty measures are a way of jointly quantifying the amount of information and the “disorder” in a complex
system’s behaviour

0.5

0.4 +

C = HD =— K3(p log(p))x(p, — 1/N)° | °*

/ /o

Shannon'’s entropy Departure from equipartition
(vanishes in a crystal) (vanishes for an ideal gas) 0.1+

period 4 orbit
® period 4 orbit with parameter noise
® chaos with parameter noise

chaos

NOAA Ol SST V2 HighRes

0.0

0.0 0.2 0.4 0.6 0.8 1.0
H

Is ENSO a chaotic system or a stable mode forced by noise?

We compared the complexity of the observed Nino3.4, that simulated by CEMS2 and four integrations of our model:

Chaos

Chaos with parameter noise

Stable period 4 orbit

Stable period 4 orbit with parameter noise
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A minimalistic recipe for ENSO dynamics:

1. An oscillation with fast and slow transitions
Fast: El Nino - La Nina
Slow: La Nina » El Nino

Consistent with La Nina events lasting multiple years

2. Periodic annual forcing (e.g., seasonal modulation of the Bjerknes
feedback)

> Chaotic behaviour arises from the interaction between the fast and

slow transitions with the annual forcing, with periodic orbits of period
NT (T=lyear)
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Implications:

e ENSO's chaotic regime could be sensitive to changes in climate -
It it close in parameter space to a stable periodic mode... could ENSO

become more stable?

e Thissimple models allows us to explain different plausible ENSO
behaviours (i.e., different possible natural variability states), study the
predictability in different regions of the attractor

e GCMs and machine learning models of ENSO could be tested in
terms of their capability to reproduce ENSO dynamics and the
strange attractor structure

Thank you for your attention! 16



Extra slides

17



Self | N kl N g NUM be I'S of periodic orbits are topological invariants. These are quantities associated with

the topological space that do not change under continuous deformations in space. Hence, any model capable of reproducing
the correct dynamics should show orbits with the correct self linking number.
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Conclusions, thoughts and steps forward

A takens-bogdanov bifurcation with a periodic forcing can lead to chaotic behavior
and the complexity of such dynamics is comparable to that of the observed and
modeled (CESM2) ENSO.

This dynamical systems perspective can serve to evaluate interpretable dynamical
models, global climate model simulations, machine learning models, etc.

Physically interpretable models in the existing literature are likely to have, in some

region of their parameter space, a takens-bogdanov bifurcation. Integrating such

models in a region of the parameter space where solutions are stable may lead to the
conclusion that noise is needed to capture irregular behaviour. Some of these models

are of infinite dimension (i.e., delay equation models) these results show that if realistic
solutions can come from these models, they should be those where the dynamics
collapses to three dimensions. 19



Dynamical systems view of ENSO

Nino 3.4 1982-2023 (Butterworth filtered)
NOAA OI SST V2 High Resolution Dataset

Embedded time series

Taken's theorem allows us to recover a
system’s phase space by embedding

s observable (X), taking delayed samples of one
only time series. The theorem proves that this
embedding will have the same topological

" properties as the real phase space.

Effective dimension
analysis

What is the minimum dimension where this flow
can live without self-crossings of the flow? 20
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