

Background of the study

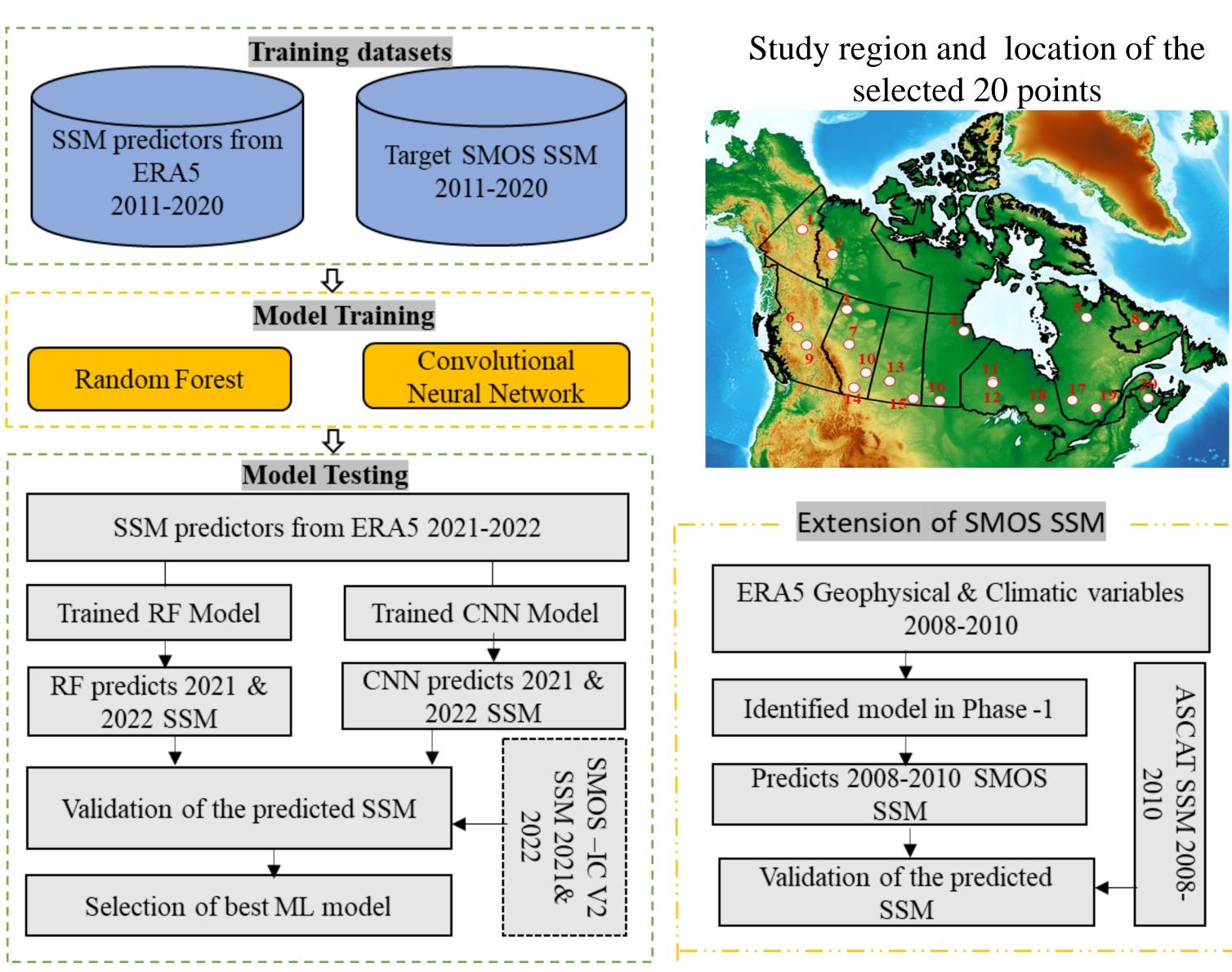
- \circ The launch of several satellite missions has expanded research possibilities in the area of soil and vegetation interactions, both regionally and globally.
- These missions exhibit data deficiency in regions with complex topography, snow-covered and densely forested regions.
- Machine learning algorithms are effectively used to fill data gaps in various soil moisture products.

Objective: To develop a novel framework using ML approaches for the spatiotemporal extension of the SMOS observations over Canada.

Datasets

DATASET	RESOLUTION	ALGOF
SMOS-IC V2	25 KM , DAILY	L-MEB
ASCAT	25 km, 1-3 days	Change Detec Algorithm

Methodology



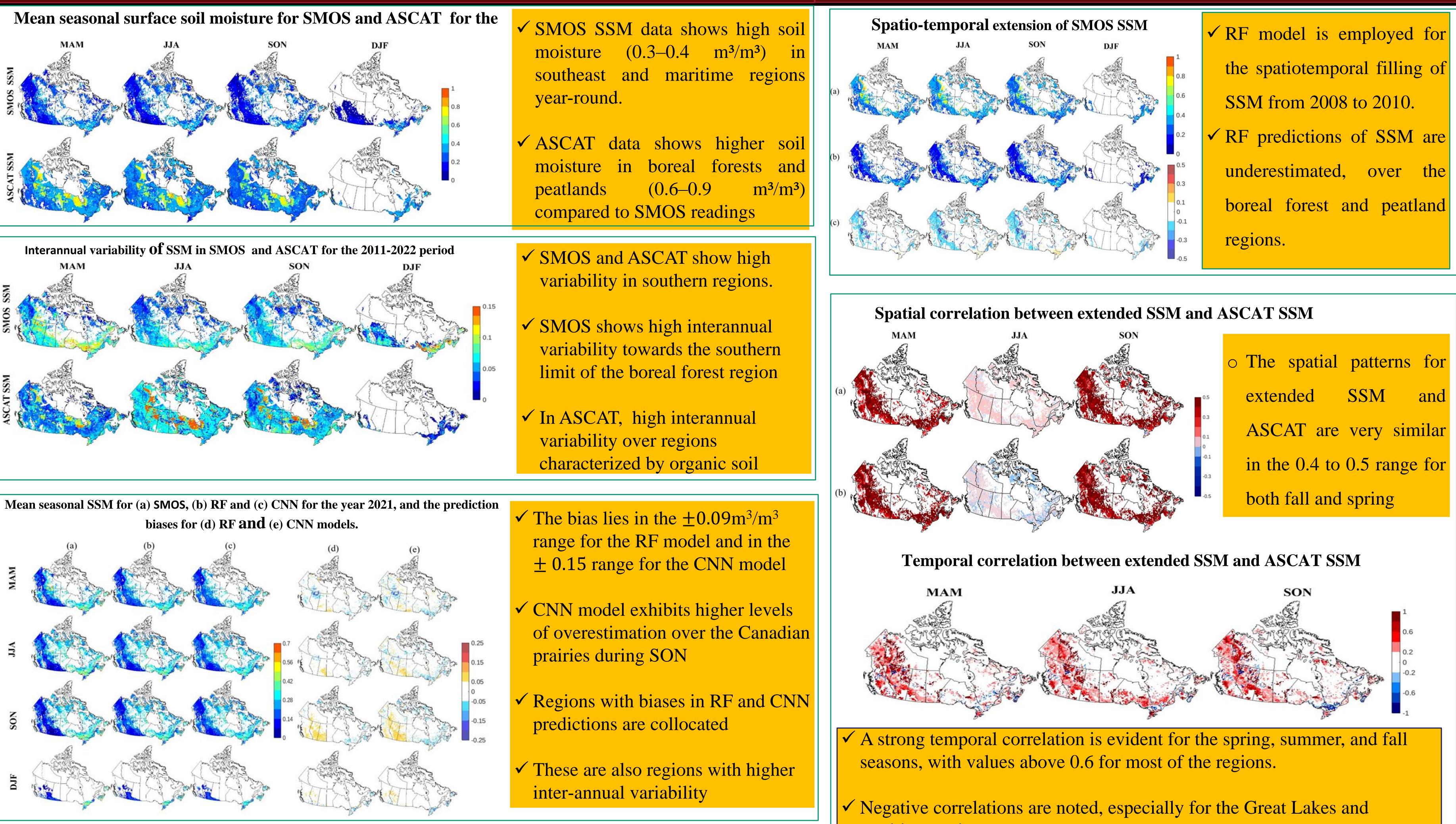
ERA5 Variables

Total precipitation, **• Evaporation**, **○2-m air temperature**, **○2-m dewpoint temperature,** odewpoint depression (proxy for humidity), ⊃**snowmelt,** osnow depth and • water availability \circ Soil type, vegetation type and their fractional areas lake fraction

Machine Learning Framework for Extending SMOS Surface Soil Moisture Observations over Canada

RITHM

ection



Evaluation metrices RMSE and R for the year 2011-2020

			RF	C	NN
		RMSE	R	RMSE	R
		(m^{3}/m^{3})		(m ³ /m ³)	
Year	Seasons			× ,	
2011	MAM	0.013	0.79	0.058	0.57
2011- 2020	JJA	0.011	0.95	0.042	
					0.66
	SON	0.017	0.81	0.093	0.36

Acknowledgements

References

1.Ågren, A., J. Larson, S. Shekhar Paul, H. Laudon, and W. Lidberg. 2021. "Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape." Geoderma 404:115280. https://doi.org/10.1016/j.geoderma.2021.115280. 2.Champagne, C., A. Davidson, P. Cherneski, J. L'Heureux, and T. Hadwen. 2015."Monitoring agricultural risk in Canada using L-band passive microwave soil moisture from SMOS." Journal of Hydrometeorology 16 (1):5-18. https://doi.org/10.1175/JHM-D-14-0039.1

Jeenu John¹, Laxmi Sushama¹, Shinto Roose¹ ¹Department of Civil Engineering and Trottier Institute for Sustainability in Engineering and Design, McGill University

Results: Development & Validation of ML

Evaluation metrices RMSE and R for the year 2021 & 2022

 \checkmark The developed framework is robust in that it can be used to resolve spatial/temporal data gaps in other SSM products and for other regions of the world

2. Champagne, C., A. Davidson, P. Cherneski, J. L'Heureux, and T. Hadwen. 2015. "Monitoring agricultural risk in Canada using L-band passive microwave soil moisture from SMOS." Journal of Hydrometeorology 16 (1):5-18. https://doi.org/10.1175/JHM-D-14-0039.1 3.Cui, Y., D. Long, Y. Hong, C. Zeng, J. Zhou, Z. Han, R. Liu, and W. Wan. 2016. "Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau." Journal of Hydrology 543:242-54. https://doi.org/10.1016/j.jhydrol.2016.10.005. 4.El Bouchefry, K., and R. S. De Souza. 2020. "Learning in big data: Introduction to machine learning." In Knowledge discovery in big data from astronomy and earth observation, 225-49. Elsevier. https://doi.org/10.1016/B978-0-12-819154-5.00023-0 5.Entekhabi, D., E. G. Njoku, P. E. O'neill, K. H. Kellogg, W. T. Crow, W. N. Edelstein, J. K. Entin, S. D. Goodman, T. J. Jackson, and J. Johnson. 2010. "The soil moisture active passive (SMAP) mission." Proceedings of the IEEE 98 (5):704-16. https://doi.org/10.1109/JPROC.2010.2043918. 6.Ramírez Casas, F. A., L. Sushama, and B. Teufel. 2022. "Development of a Machine Learning Framework to Aid Climate Model Assessment and Improvement: Case Study of Surface Soil Moisture." Hydrology 9 (10):186. https://doi.org/10.3390/hydrology9100186 Wagner, W., G. Lemoine, and H. Rott. 1999. "A method for estimating soil moisture from ERS scatterometer and soil data." Remote Sensing of Environment 70 (2):191-207.

https://doi.org/10.1016

Results: Extension and Validation of SSM

the spatiotemporal filling of

CALC RF predictions of SSM are underestimated, over the boreal forest and peatland

maritime regions.

Conclusions

 \checkmark This study has demonstrated the spatiotemporal extension of L band SSM observations in Canada, employing ML models using 14 ERA5 reanalysisbased predictor variables and SMOS SSM as the target variable.

 \checkmark RF model showed robustness and efficiency in predicting SSM .

 \checkmark Additional investigation is needed to enhance its ability to capture SSM for land surface types not included during training