NEOGENE BIOSTRATIGRAPHY IN THE NIGER DELTA BY INTEGRATING FORMINIFERA AND PALEOCEONOGRAPHIC CONDITONS

*Joshua Avong Solomon, *Enam Obiosio, *Hamidu Ibrahim, #Ubit Gospower, and Linus Anyanna *Department of Geology, Ahmadu Bello University Zaria, #Department of Applied Geology, Abubakar Tafawa Balewa University, Department of Geology, Federal University Gusau, Nigeria.

PRESENTED BY SOLOMON JOSHUA AVONG

AT THE EUROPEAN GEOSCIENCES UNION GENERAL ASSEMBLY,2024

Presentation Outline

- Background of the study
- Statement of research problems
- Methodology
- Results and Discussion
- Conclusions
- Recommendations
- References

Background of the study

- Nigeria's oil province, the Niger Delta, is situated on the continental shelf of West Africa.
- The Niger Delta Basin exhibits an upward transition ranging in age from early Tertiary to Recent, moving from marine pro-delta shales (Akata Formation) through a paralic (Agbada Formation) to a continental sequence (Benin Formation).
- AVG-1, which is part of OML-95, is located at latitude 5°30'20"N and longitude 4°30'48"E, northwest of the Niger Delta.

Part of West Africa and the Gulf of Guinea Showing Nigeria's Sedimentary Basin and In set is a map of Africa showing the Location of the Niger Delta region (Corredor *et al.*, 2005)

Statement of Research Problems

- The research work published by STRATCOM committee and part of its objectives was to harmonize the biostratigraphy data of onshore and conventional offshore wells using foraminifera to unravel the geological information of the Niger Delta Basin Adegoke *et al.* (2017), however there still remain more to be done.
- □ Taxonomic usage of foraminifera for age determination in the Niger Delta still has some degree of knowledge deficiency and ambiguity.
- □ The problems in the application of the First Downhole Occurrence(FDO) and Last Downhole Occurrence(LDO) datum for biochronologic correlations.
- □ However, the biostratigraphy, sequence stratigraphy and palaeoenvironment of the present study well have not been documented. This research would contribute to the already existing knowledge Northwest of the Niger Delta Basin.

Aim and Objectives

The project aim to integrate the palaeoenvironment, sequence stratigraphy, and biostratigraphy of the sediments in the studied well. The objectives consist:

- Describe the lithostratigraphic framework.
- Provide an age and biostratigraphic zone proposal.
- **Establish the sequence stratigraphic framework.**
- Based on the microfossil assemblages, ascertain the paleoenvironment.

METHODOLOGY

- **1. Materials**: ditch cutting samples and wireline logs. Eight (80) ditch cuttings samples from AVG–1 well (830–5580ft interval) were sampled at 30ft for foraminifera studies respectively.
- 2. Methods
- □ Lithostratigraphy
- □ Foraminifera Sample Preparation
- □ Biostratigraphic method
- □ Sequence Stratigraphy
- □ Paleoenvironmental analysis: paleobathymetry and paleosalinity

RESULTS AND DISCUSSION

Lithostratigraphic Units

- □ Sandstone: milky white to glassy, fine to coarse grained, sub-angular to sub-rounded, angular, poorly sorted to well sorted, and some carbonaceous fragments.
- □ Shale: Brownish to greyish, flaggy to platy, fissile, carbonaceous. Rare occurrences of ferruginous materials, mica flakes, pyrite, gluconite pellets and rare shell fragments.

Depth (ft)	GR-Log	Lithology	Periodiepoch	Lithologic Unit	Diagnostic Criteria
9000 10000 112000 12000 13000 14000 14000 14000 14000 14000 21000 22000 24000 24000 24000 26000 27000 28000 28000 28000			in ficer	Sandstone	Sand/shale ratio of approximately 90:10, sporadic occurrences of relatively thin shale units and largely composed of transitional fauna.
3000 3100 3200 3400 3500 3600 3700 3800 3900 4000 4100 4200	M. Southward and A.		lan la	Shale	Sand/shale ratio of approximately 5:95, few relatively thin sand/silt units and composed of shallow marine fauna.
4400 4600 4700 4800 5000 5100 5200 5200 5200 5200 5200 52			isy team the	Sandstone and Shale intercalation	Sand/shale ratio of approximately 85:15, thick sand units with relatively thin shale bodies and composed of shallow marine fauna.
			0	100 **	Sandarana

Lithologic log of AVG-1 well.

.

Micropaleontological Data

- Foraminifera Microfauna:Foraminiferal recoveries were generally good, well preserved and with a high diversity.
- Planktonic foraminifera such as; *Catapsydrax stainforthi, Orbulina universa, Globigerinoides bulloideus, Globorotalia mayeri* and *Globorotalia continuosa.* Showed the age of the study well to be Early to Late Miocene (N6-N17).

			Chonestatigraphy	Plantific Benefici	s bulloideus	sminate	s trilobus immaturus	s bolli	s obliquus obliquus	esu	s trilobus trilobus	s sp.	besa	sp.	altispira	nezuelana	p.	s subquadratus	s altiaperturus	ontinuosa	nayeri	s extremus	tainforthi	chipolensis	s primordius	aebulloides
Depth (F)		Lithology	PeriodEpoch	Zone	Globigerinoide	Planktic indete	Globigerinoide	Globigerinoide	Globigerinoide	Orbulina unive	Globigerinoide	Globigerinoide	Globorotalia o	Globorotalia s	Globoquadrina	Globigerina ve	Globigerina s	Globigerinoide	Globigerinoide	Globorotalia c	Globorotalia m	Globigerinoide	Catapsydrax s	Cassigerinella	Globigerinoide	Globigerina pr
1000 1100 1200 1200 1300 1400 1400 1500 1500 1700 1700 2100 2100 2200			Late Moone	JN	-	-																				
2300 2400 2500 2600 2700 2800				LN-9N		_	-	_	_	_																
2900 3000 3100 3200 3300				91V-SIN	-						_															
3400 3500 3600 3700			locate	\$N-14	-		=					-	-													
3900 4000 4100 4200			Nodel	HNDHY - EN	Ξ	=	= =		-		-	-	-	-	-	Ξ	-	Ξ	=	Ξ	Ξ	-	-			
4400 4500 4600 4700 4800 5000 5100 5200 5200 5300 5400 5500			Early Nooree	N-N		- =	-		-	-		=	-				-	-	-	-	-		-	-	-	-
Trat Keyan	e abundance (30 = 2 S ⁹⁹ medium)	20mm, scale tick	= 10 counts) Boundar Pr	onfide	es l	Bampi	utting ore	onfor	mabl	- 	FOR	ateg	Core	hifera	eggh	utinat	ing	Flankt	P-M rate F	eram	fera Di	a plar stribut	ion Ch		VG-1 Well

Planktonic foraminiferal distribution chart for AVG-1 well

														For	amin	ifera	Be FC	DBC	ic Ci	alca	reou	45										For	ami	nifera . Ag	
			Chronostratigraphy	Planktic Baw STP	Sel	ulata stata	a microcostata attonii	arii	a sp. lessonii	eudoungeriana	mata	auberiana attenuata	beregrina	SIL	ata mioceanica costiferum	5	incta		atrix	h oligocaenica hi	leterminate	ndis	kannai	2	suicatum	aris	oroveensis ina sp.	sicostata	sp. vino ounto	inna ovata Priana	unctata idanus	oides sp. ndeterminate	oldes narivaensis	partamensis es agglutinans nium crassum	
Depth (Ft)	GR Log	Lithology	Period/Epoch	Zone	Zone	Lenticulina rotu Marginulina co	Quinqueloculini Hanzawaia stra	Ammonia becc	Quinqueloculin: Amphistegina	Heterolepa pse	Bulimina sp. Lenticulina inol	Siphouvigerina Nodosaria sp.	Uvigerina subp	Uvigerina sp. Flonilus atlantic	Bolivina scalpri Florilus ex. gr. c	Bolivina sp. Cihimrhis infla	Brizalina interju	Cristellaria sp. Fiscurina sp.	Bolivina impere	Spirosigmoilina Bolivina beyrici	Heterolepa sp. Calcareous ind	Lenticulina gra	Nonion sp. Heterolepa mc	Eponides eshir	Bolivina derton	Valvuineria sp Attistonia scala	Bolivina mando Pseudoglanduli	Uvigerina spar	Frondicularia s	Uvigerina aube	Fursenkoina pu Heterolepa flor	Haplophragmo	Haplophragm	Poritextutaria Ammobaculite Alveolophragn	Samples (ft)
1000 1100 1200 1300					nsis																											-	-		-1310' CU
1400 1500 1600				LLL NI	ragmoides narivae			-																									-		-1370' GU -1430' GU
1800 1900 2000 2100			Miocene		Haploph																														-1790' CU -1880' CU -1940' CU -2030' CU -2050' CU -2150' CU
2200 2300 2400 2500			Late	21N-1	baculites Minans																													-	-2210' CU -2270' CU -2350' CU -2350' CU -2450' CU -2570' CU
2800 2700 2800 2900				A16	Ammo	:	-			-			-																						-2750' CU -2810' CU -2870' CU -2930' CU
3000 3100 3200 3300				NIS-NIG	Uvigerina subperegrina	-		-	::		= -	- :	-				· -	-															-		-2990' CU -3050' CU -3110' CU -3170' CU -3230' CU -3290' CU
3400 3500 3600			56 56	N14-N15	Spirosigmoilina oligocaenica			:			-	: :		-	-	-			-		-														-3410'CU -3470'CU -3630'CU -3690'CU -3690'CU -3690'CU
3800 3900 4000 4100			Middle Mioc	NON I	ponides eshira	-						-						:	-			-													-3770' CU -3830' CU -3850' CU -4010' CU -4070' CU -4130' CU
4200 4300 4400 4500	E			ana								-			: '			-	-				-				-	-		-					-4250' CU -4250' CU -4370' CU -4430' CU -4430' CU -4450' CU
4700 4800 4900 5000			Early Miocene	2N • SN	inella subfusiformis		-	=	E			-			=	: :		-	· _		1	-	Ē		E	-	-							-	-4610'CU -4730'CU -4730'CU -4730'CU -44780'CU -44800'CU -44800'CU -44800'CU -44800'CU -44800'CU -44800'CU -44800'CU -44800'CU -44800'CU -44800'CU
5200 5200 5400 5500	E				Bulimi				- :			:	-					-	-		::	:	Ē	-	-		-				-	=			
Text Ke	ys itative abunda thelegy	ance (30 =	20mm, 1	scale tic	k = 10 c	iounts)	Boun	dary Prot	Types	Sa	mplin	nconfe ing	orma	ble -	FOR	Catego A - For	Core	lifera	egglut	inatio	. –	FOP	- Foran Misce	minit Ilane thic	era pla ous n	anktor sicrofe	nic ssils	eral	Dis	strik	butic	-	hart		6-1 Well
and sand	(fine - mediu	**)						_Con	ndent			-											Scale	: 1:1	00										

Benthonic foraminiferal distribution chart for AVG-1 well.

			Chronostratigraphy	Planktic Bon 193	199		ides bulloideus	terminate	es trilobus immaturus	es bolli	es obliquus obliquus	Versa Yes trilohus trilohus	des sp.	obesa	ia sp.	na altispira	/enezuelana a sn	s subquadratus	des altiaperturus	continuosa	mayeri	des extremus	stainforthi	la chipolensis	orimordius oraebulloides	
Depth (F)		Lithology	PeriodEpoch	Zone	Zone	This study	Globigerino	Planktic inde	Globigerinoide	Globigerinoide	Globigerinoid	Orbuina uni Globinerinoir	Globigeninoid	Globorotalia	Globorotali	Globoquadrii	Globigerina v Globinerin	Globigerinoides	Globigeninoid	Globorotalia	Globorotalia	Globigerinoid	Catapsydrax	Cassigerinell	Globigerina (Globiderina (Samples (ft)
1000 1100 1200 1300					- 55																					-1310 CU
1400 1500 1800				LN	phragmoides nariva	oideus																				-1430 CU
1900 2000 2100 2200			ate lilocene		韓	oides bull																				-1880° CU -1940° CU -2030° CU -2090° CU -2090° CU -2210° CU
2300 2400 2500 2600		國政主動財新制合正 3	_	VIG-N/7	aguitirans	slobigerin																				-2270 CU -2330 CU -2390 CU -2480 CU -2510 CU -2570 CU
2800 2900 3000 3100				NS-N6	Unigerina h bperegrina	Globigerinoides (ŧ																-2810 CU -2810 CU -2870 CU -2890 CU -2890 CU -3080 CU -3110 CU
3300 3400 3500 3500	A DAMAGE		a.	SM-111	bairosigmoilina oligoczenica s	erinoides s trilobus								Ι												-3290° CU -3350° CU -3410° CU -3570° CU -3530° CU -3580° CU -3580° CU -3710° CU
3800 3900 4000 4100			Midde Nicce	Non'i	pundes estima	Globige									ł			-			Т					-3770 CU -3830 CU -3850 CU -3950 CU -4010 CU -4070 CU -4130 CU
4200 4300 4400 4500				F 16 Y 12		rina venezuelana vadrina altispira	1									•	'					ł		I		-4250 CU -4310 CU -4370 CU -4490 CU -4490 CU -4690 CU -4610 CU
4700 4800 4900 5000			aly licene	N:N	ella sublusiformis	des Globige Globoq					l												I		ī	4676 CU 4796 CU 4796 CU 4856 CU 48570 CU 48570 CU 4930 CU 49300 CU
5100 5200 5300 5400	E	n in de line particular de la Carlo An de line particular de la Carlo An de line particular de line particular An de line particular de line particular An de line particular de line particular de line			Bulimin	Globigerinoic primordius		ł																I	+	
Text Keys 1 quantitation	ve abundance (30 – : egynedium)	20mm, scale tick	c = 10 counts	Boundar Co	y Types 5a	Unconfe mpling Cutting	rmat	Ta	FSB	Cate	ll Core orami orami	Mara	eaglat	inatio		E MAR	- Fore	minife Hane	sus n	inste licrof	ossils (fere					/a-1 weil

Biostratigraphic range chart of planktonic foraminifera for AVG-1 well.

Biostratigraphic range chart of Benthonic foraminifera for AVG-1 well.

Depositional sequence

Three depositional sequences were recognized in the study well. The depth summary of the depositional sequences is presented in Table 1.

Table 1: Depth summary of sequence present in the study well

Sequence	Depth Range (ft)	Age
Sequence 1	5580-4370	Early Miocene
Sequence 2	4370-3500	Early Miocene to Middle Miocene
Sequence 3	3500-2300	Middle Miocene to Late Miocene

Associated key surfaces

- □ Maximum Flooding Surface (MFS); at 5220ft (16.0Ma), 4150ft (11.6Ma) and 3250ft (9.2Ma)
- **Sequence Boundaries (SB)**; at 4370ft (15.5Ma), 3500ft (10.5Ma) and 2300ft (8.5Ma).
- □ Sedimentary cycle interpretation ; based on the ages of the three MFS correlated to Haq *et al.*, (1988) chronostratigraphic chart, reveals that the studied well interval went through three cycles of deposition: Early (Cycle 7), Middle Miocene (Cycle 9) and Late Miocene (Cycle 10).

Sequence Stratigraphy Chart of AVG-1well.

Paleobathymetry

- □ **Transitional environment:** high sand ratio (high-energy environment). *Amphistegina lessonii* and *Quinqueloculina microcostata*
- □ Inner neritic-middle neritic environment: sandstone and high shale ratio, mica flakes, pyrite, glauconite pellets and ferruginous materials(supports a low-energy shallow marine environment). *Ammonia beccarii, Cibicorbis inflata* and *Florilus atlanticus,*
- □ Outer Neritic: presence of planktonic foraminifera such as *Globigerinoides* sp., *Catapsydrax stainforthi*, *Uvigerina sparsicostata* and *Brizalina mandoroveensis*.

Paleoenvironment Chart of AVG-1well.

Paleoesalinity interpretations; The triangular plots reveal the dominance of the hyaline calcareous (over 90%) shell type suggesting a normal marine shelf sea environment.

Triangular plots of shell-type ratio within the study well.

Research contribution to knowledge

- □ The micropalaeontologic and lithological description showed that the sediments for the study interval belong to the Early to Late Miocene paralic Agbada Formation. The biozones that were proposed, correlates to standard Mid-latitudinal zones.
- □ The GR log and microfossils abundance revealed three episodes of sea level rise and fall, influenced by eustacy and regional tectonics within the Niger Delta during the Miocene.
- □ The foraminiferal bathymetric ranges of: *Haplophragmoides narivaensis*, *Ammonia beccarii*, *Lenticulina inornata*, *Uvigerina subperegrina*, *Eponides eshira* and wall composition triangular plot, which showed the dominance of the hyaline calcareous (over 90%). These revealed that the sediment deposition occurred within a shallow to inner shelf settings.

Plate I

All the foraminifera species illustrated in Plate I (adapted from Adegoke *et al.*, 2017) .Were collected from AVG-1 Well, Niger Delta. Below is the species name, corresponding depth of occurrence and magnification.

- 1. Florilus atlanticus (Cushman, 1947), (3110-3350ft), side view ×175.
- 2. Florilus costiferum (Cushman, 1926),(3110-4900ft), side view (×200)
- 3. Amphistegina lessonii (d'Orbigny, 1826),(1370-5209ft),(×55)
- 4. *Eponides eshira* (de Klasz and Rerat, 1962), (3890-5480ft), umbilical view, (×175)
- 5. *Lenticulina grandis* (Cushman 1927),(3770-5510ft) apertural view, (×500)
- 6. *Lenticulina inornata* (d'Orbigny, 1846),(2850-3170ft), apertural view, (×75)
- 7. Uvigerina subperegrina (Cushman and Kleinpell, 1934),(2850-5209ft), side view, ×500.
- 8. Uvigerina sparsicostata (Cushman and Laiming, 1931; LeRoy, 1944), (4190-5580ft), side view, ×260
- 9. Globigerinoides extremus (Bolli and Bermudez, 1965), (4010ft) umbilical view, (×300)
- 10. *Globigerinoides obliquus* (Bolli, 1957), (2850-4930ft) umbilical view, (×182)
- 11. Globigerinoides primordius (Blow and Banner, 1962), (4930-5580ft) spiral view, (×149)
- 12. Bolivina mandoroveensis (Graham, de Klasz, and Rerat, 1965) (3900-5360ft), side view, ×300.
- 13. Eponides eshira (de Klasz and Rerat, 1962), (3890-5480ft), umbilical view, (×175)
- 14. Hanzawaia strattoni (Applin, 1925), (1370-4310ft), ventral view, ×500.
- 15. Catypsydrax stainforthi (Bolli, Loeblich and Tappan, 1957), (4250-4930ft) × 214
- *16. Cibicorbis inflate* (d'Orbigny, 1846), (3110-5200ft) × 200.
- 17. Haplophragmoides narivaensis (Bronnimann, 1953), (950-4620ft) ×225

Plate II

All the foraminifera species illustrated in Plate II (adapted from Adegoke *et al.*, 2017) .Were collected from AVG-1 Well, Niger Delta. Below is the species name, corresponding depth of occurrence and magnification

- 1. *Alveolophragmium crissum* (Shchedrina, 1936), (3770ft) ×330.
- 2. *Poritextularia Pananemsis* (Cushman, 1918), (2270ft) side view, ×50.
- 3. *Ammobaculites agglutinans* (d'Orbigny, 1846), (2270ft) ×100.
- 4. *Quinqueloculina microcostata* (Natland, 1938), (1370-3900ft) side view, ×160.
- 5. *Spirosigmoilopsis oligocaenica* (Parr, 1942), (3410-5200ft), side view, ×450.
- 6. *Nonion centrosulcatum* (de Klasz, Le Calvez, and Rerat, 1964), (3910-5540ft), side view, ×275.
- 7. Bolivina beyrichi (Reuss, 1851), (3470-3590ft) side view, ×420.
- 8. *Brizalina imperatrix* (Graham, de Klasz, and Rerat, 1965), (3330-5200ft), side view, ×225.
- 9. Valvulineria sp (Cushman, 1926), (3950-5540ft) spiral view, ×480.
- 10. Ammonia beccarii (Linne, 1758), (1370-4960ft) umbilical view, ×300.
- 11. *Heterolepa pseudoungeriana* (Cushman, 1922), (2700-5209ft) umbilical view, ×150.
- 12. Turborotalia obesa (Bolli, 1957),(3320-5540ft) umbilical view, ×325
- *13. Globigerinoides bulloideus* (Crescenti, 1966), (1370-4250ft) umbilical view, ×130.
- 14. Orbulina universa (d'Orbigny, 1839), (2850-4730ft) side view, ×150.
- 15. Altistoma scalaris (de Klasz and Rerat, 1962), (4130-5140ft) side view, ×200.
- 16. Praeglobobulimina ovate (d'Orbigny, 1846), (4130ft) side view, ×200.

REFERENCES

- Adegoke, O.S., Oyebamiji, A.S., Edet, J.J., Osterloff, P.L., Ulu, O.K (2017). Cenozoic Foraminifera And Calcareous Nannofossil Biostratigraphy Of The Niger Delta. Copyright © 2017 Elsevier Inc.
- Aubry, M.P., 1992. In: Prothero, D.R., Berggren, W.A. (Eds.), Eocene–Oligocene Climate and Biotic Evolution. Princeton University Press, U.S.A., pp. 271–309.
- Berggren . W.A et al . (1995): A revised Cenozoic geochronology and Chronostratighraphy, SEPM Special Publication. 54 : 129 212
- Blow, W. H. (1979). Late Middle Eocene to Recent Planktonic Foraminiferal Biostratigraphy. Proc. First International Conf. Planktonic Microfossils: 199–422.
- Bolli, H. M., and J. B. Saunders, (1985). Oligocene to Holocene low latitude planktic foraminifera, in H. M. Bolli, J. B. Saunders and K. Perch-Nielsen, (eds)., Plankton stratigraphy. New York, Cambridge University Press, 1: 155-257.
- Corredor, F., John, H.S., and Frank, B., (2005). Structural Styles in the deep-water fold and thrust belts of the Niger Delta: American Association of Petroleum Geologists Bulletin, 89 (6): 753 780
- Cushman, J.A., and Laiming, B. (1931). Miocene foraminifera from Los Sauce Creek, Ventura County, California. Journal of Paleontology. 5 (2): 79 120
- Fadiya, S.L., 2012. Two new short-ranged *Calcidiscus* species from the offshore marine Neogene Niger Delta sequences. Micropaleontol. J. 58 (6), 539–542.
- Fadiya, S.L., 2014. Impact of wellsite biostratigraphy on exploration drilling in the deepwater offshore Nigeria. J. Afr. Earth Sci. 100, 60–69.
- Fadiya, S.L., Salami, M.B., 2012. Middle Miocene carbonate crash in the Niger Delta: evidence from calcareous nannofossils. J. Nannoplankton Res. 32 (2), 59–70.
- Grandstein, F., Ogg, J., Smith, A.G et al.; (2004): Cenozoic Time Scale, In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, SEPM Special Publication 60. Cambridge Univ. Press
- Hedberg, H.D. (1976). International Stratigraphic Guide A guide to stratigraphic classification, terminology, and procedure. John Wiley and Sons, New York. 200
- Kennett, J.P., and Srinivasan, M.S. (1983). Neogene Planktonic Foraminifera: A Phylogenetic Atlas. Hutchinson Ross Publishing Company, 265p.
- Loeblich, A. R., Jr. and Tappan, H. (1987). Foraminifera and their Classification. Van Nostrand Reinhold Company, New York: 970
- Martini, E. (1971): Standard Tertiary and Quarternary calcareous nannoplankton zonation. In: Farinacci (Editor), Proceedings II Planktonic Conference, Roma, 1970, 2:739-785
- Michael A. M. and Amos S. International Subcommission on Stratigraphic Classification of IUGS International Commission on Stratigraphy International Stratigraphic Guide— An abridged version, Vol. 22(4), pp. 255-272
- Murray, J. W. (1991): Ecology and Palaeoecology of Benthic Foraminifera. Longman Group Limited, United Kingdom : 397pp.

.

- Ogunjobi, O., 1994. Calcareous nannofossil biostratigraphy of the 'western' Niger Delta. Unpublished MSc Thesis, University College,London.
- Okada. H. and Bukry, D. (1980) Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Marine Micropaleontology, S, 321-325.
- Okosun, E.A., Chukwu, J.N., Ajayi, E.G., and Olatunji, O.A., (2012). Biostratigraphy, Depositional Environment and Sequence Stratigraphy of Akata Field (Akata 2, 4, 6 and 7 Wells), Eastern Niger Delta, Nigeria. International Journal of Scientific & Engineering Research3 (7): 1 27
- Osterloff, P., Adegoke, O.S., Starkie, S., Adebiyi, A., Oyeyinka, G., Ndulue, P., Tiamiyu, A., Lawal, K., 2013. A Practical Application of Chronostratigraphic Refinement of the NN5-NN4 Calcareous Nannofossil Zones in the Niger Delta. NAPE Bull., Abstract Volume.
- Oyebamiji, A.S., 1997. Calcareous nannofossil biostratigraphy of a well in the Niger Delta, Nigeria. Unpublished MSc Thesis, University College London.
- Ozumba, M.B. (1995). Late Miocene-Pliocene Biostratgraphy Offshore Niger Delta. Nigerian Association of Petroleum Explorationist, 10: 40-48
 - Ozumba, M.B. and Amajor, L.C., (1999). Evolutionary Relationships in some benthonic foraminifera of the Middle to Late Miocene, Niger Delta. Nigerian Association of Petroleum Explorationist Bulletin. 14 (2): 157-167

THANK YOU