

Eleonora Dallan¹, Francesco Marra^{2,3}, Giorgia Fosser⁴, Marco Marani⁵, and Marco Borga¹ ¹Department of Land Environment Agriculture and Forestry, University of Padova, Italy; ³National Research Council of Italy - Institute of Atmospheric Sciences and Climate (CNR-ISAC), Bologna, Italy; ⁴University School for Advanced Studies - IUSS Pavia, Padova, Italy; ⁵Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy

1. Background and motivation

- Sub-daily rainfall extremes increase in a warming climate \rightarrow assess their future changes for improving risk management
- Recent advance 1). High-resolution convection-permitting climate models (CPMs): more realistic representation of convection than coarser-resolution regional models; but 10 to 20yr-long runs limit the use of conventional extreme value methods for assessing rare events with low occurrence probability
- Recent advance 2). Novel non-asymptotic extreme value approaches: estimation of rare return levels with reduced stochastic uncertainty, even from short datasets

<u>Objective</u>: to project future sub-daily precipitation return levels in a region characterized by complex terrain by making leverage of a CPM ensemble and a novel non-asymptotic EV method; to explain the changes in their statistics

4. Results and take home messages

- at short duration
- in the mountainous areas (eastern Alps and upper Apennines)

This research has been supported by the Fondazione Cassa di Risparmio di Padova e Rovigo (Excellence Grant 2021 to the Resilience Project). This study has also been carried out within the RETURN Extended Partnership and received funding from the European Union Next-GenerationEU (National Recovery and Resilience Plan – NRRP, Mission 4, Component 2, Investment 1.3 – D. D. 1243 2/8/2022, PE0000005)

Assessing and explaining future changes on sub-daily precipitation extremes using an ensemble of convection-permitting models

CPMs from the CORDEX-FPS project (Ban et al, 2021), emapped on common ~3km grid				2.
nstitute	СРМ	Horiz. Resolut.	Time periods	of
ETH	COSMO	~2.22 km		
KIT	COSMO-CCLM5	~3.05 km	Historical:	
CMCC	COSMO-CCLM5	~3.05 km	1996-2005	
CLIMcom	HCLIM38-ALADIN	3 km		
CNRM	CNRM-AROME41t1	2.5km	Near future: 2041-2050	
KNMI	HCLIM-AROME	3 km		
ICTP	RegCM4	3 km	Far future:	
МОНС	hADrem_um10.1	~2.22 km	2090-2099	
FZJ,IDL	WRF381CA	3 km		

- similar to those at 20yr return period
- significant changes consistently across return periods

- higher return periods
- that is linked to
- lower shape \rightarrow heavier tails (local dynamics?)
- even if n decreases \rightarrow large scale dynamics ?

4. Intense precipitation: positive change, higher for shorter durations and

5. Parameters' change (*calculated on points where the 20yr return level is signif.) gives understanding on the positive change in intense precipitation,

- increased scale \rightarrow thermodynamics plays a role at short durations

