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When estimating future runoff and flood events using a global hydrological model (GHM), the

large uncertainties associated with general circulation models (GCMs) and bias in GHM

model structure pose significant challenges. In the meantime, most future runoff projections

and flood estimations are conducted only at specific gauge stations due to limited data

availability, and unable to support basin-wide water resources planning and management. To

address these issues, this paper proposes a spatiotemporal-pattern-based machine learning

method, DSGPR-EOF, which is a combination of Dual-stage Sparse Gaussian Process

Regression (DSGPR) and Empirical Orthogonal Function (EOF). DSGPR-EOF is developed

to improve the accuracy of basin-wide runoff projections ,especially for flood estimations,

including flood discharge, flood peak time, and flood volume. We apply the proposed method

to the Brahmaputra River basin (BRB) known for topographical and climatic diversity to

evaluate its effectiveness and efficiency. The DSGPR-EOF method is shown to have higher

accuracy in flood peak and runoff projection than the widely used multi-GCMs ensemble

mean method. After correction by using the method, the estimation errors of 10-year flood

and 100-year flood peak discharge are reduced by 68.6% and 54.5%, respectively. The

estimation accuracy of flood peak and volume is highly consistent spatially. Additionally, it

shows that this method can apply station-wise observed discharge information to enhancing

flood estimations of the entire basin. These findings underscore the practical significance of

the DSGPR-EOF method for basin-wide flood estimation.

Effective water resources management and protection in a river basin requires basin-wide

accurate future runoff and flood projections. However, the availability of accurate runoff and

flood projections in regions of interest faces substantial challenges due to large uncertainties

associated with general circulation models (GCMs) and bias in GHM model structure pose

significant challenges. This research proposes a spatiotemporal-pattern-based machine

learning method, with the primary objective of accomplishing two key goals:

(1) Enhancing the accuracy of runoff projection and flood estimation at each grid within a

given basin with low computational cost;

(2) Integrating different forms of historical runoff and flood information (i.e. time series data,

spatial distribution data) to re-optimize basin-wide estimations in the future.

Fig. 1: Overview of the Brahmaputra River basin (BRB) and the 

four hydrological gauge stations (Yangcun, Nuxia, and 

Bahadurabad) used in the study.

The basin is suitable for evaluating the

proposed method:

➢ Large intra-annual variation in runoff:

The average annual discharge of the

Brahmaputra River is 19,824 m3 s-1,

with the flood discharge reaching up to

10 times the dry season discharge.

➢ Significant heterogeneity in
meteorological and terrain conditions：
There are diverse landforms, including

icy plateaus, rain-rich mountain ranges,

floodplains, and deltaic lowlands. The

upper reaches consist of a complex

mountain system with an average slope

of 16.8 m/km, while the lower reaches

have a gentle slope of 0.079 m/km.

Fig. 2: We developed a spatiotemporal-pattern-based machine learning method, DSGPR-EOF, which is a combination of Dual-

stage Sparse Gaussian Process Regression (DSGPR) and Empirical Orthogonal Function (EOF). 

◆Improve Computational Efficiency

Reduce dimension:

Recognize crucial modes:

Fig. 3: The illustration of EOF analysis.
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◆Enhance Accuracy

➢ Sparse Gaussian Process Regression 

(SGPR)

➢ Utilize the information of uncertainty 

intervals

Fig. 4: The effect of uncertainty interval 

information in EC prediction.
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Fig. 6:  Evaluation of the monthly runoff corrected by multi-GCMs 

ensemble average method and DSGPR-EOF method.

Fig. 7:  Relative error of peak discharge (REPD) ranges and means of estimated 

extreme flood peak (EFP) of (a) 10-year flood and (b) 100-year flood events by 

the calibrated CWatM, SGPR-EOF method and DSGPR-EOF method.

Fig. 5: The diagram of cross validation.

✓DSGPR-EOF method outperforms multi-GCMs ensemble mean method in runoff projection.

✓ Incorporating uncertainty interval information can significantly enhance the accuracy and narrow the bias

intervals of extreme value estimations.

Fig. 8: KGE (a-b) and NSE (c-d) of corrected basin-wide 

daily runoff during historical period (1979-2014).

Fig. 9: Spatial performance (APB, CC, KGE, NSE ) of AMFP estimation using the calibrated CWatM (a-

d) and the DSGPR-EOF method (e-f).

✓ DSGPR-EOF method performs 

higher overall accuracy and 

demonstrates high spatial 

consistency in accuracy for the runoff 

projections compared to the multi-

GCMs ensemble average method.

✓ DSGPR-EOF method can enhance the estimation of peak flow time

series, not just for certain extreme flood events.

✓ DSGPR-EOF method enhances the accuracy of AMFP estimation

throughout the basin and makes the accuracy gap between upstream

and downstream smaller, being minimally affected by complex climate

and terrain in the BRB.

Fig. 10: The change in validation indicators in AMFP estimated by the DSGPR-

EOF method after replacing high-fidelity discharge data for observed data at 

Yangcun, Nuxia and Bahadurabad gauge stations. 

Fig. 11: The difference between observed discharge and high-fidelity discharge at 

(a) Bahadurabad, (b) Nuxia, and (c) Yangcun gauge stations, and the difference of 

the first three ECs (d-f).

✓ DSGPR-EOF method can apply station-wise observed

discharge information (i.e. gauges, satellite altimeter

data) to enhancing flood estimations of the entire basin.

✓ DSGPR-EOF method can leverage temporal modes (ECs)

to learn error characteristics at gauge stations and

subsequently correcting the flood estimations of the entire

basin through multiplication with the spatial modes (EOFs).

◆ DSGPR-EOF method outperforms multi-GCMs ensemble mean method in the station-wise accuracy and

basin-wide accuracy consistency of runoff projections and flood estimations with low computational costs.

◆ The uncertainty intervals can serve not only as the confidence of estimation, but also as a new source of

input to enhance model estimation accuracy.

◆EOF analysis exhibits great potential in integrating multi-form observations to enhance the runoff and

flood estimations.
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