Deep learning prediction of measured earthquake waveforms from synthetic data

A. Bauer, J. Walda and C. Hammer

Institute of Geophysics, University of Hamburg

Deep learning prediction of earthquake waveforms

- Detailed knowledge of the seismic wavefield generated by large teleseismic earthquakes is crucial for high-precision measurements and experiments
- ► Long-term goal: **predict measured data** for earthquakes at arbitrary coordinates starting from synthetic data
- Synthetic earthquake waveforms can be generated for arbitrary coordinates
- ► First step: train a CNN to predict measured data for existing stations
 - ▶ Input: synthetic data generated for large earthquakes in the past
 - ► Labels: data measured at an existing seismological station
 - ► Test: application of trained network to earthquakes not part of training data

Seismological stations in Northern Germany

Source: Seismological Facility for the Advancement of Geoscience (SAGE)

Measured earthquakes ≥ M6.0 (3927 events)

Earthquakes of min. magnitude 6 between 1996-01-01 and 2023-12-31 (3927 events)

Data preparation and neural network training

- ▶ Data size: 3216 events (+22 events for application)
 - ▶ 3584 samples @ 1 Hz per event
- Bandpass-filtered between 0.01 and 0.1 Hz
- Normalized between -1 and 1
- Neural network:
 - Convolutional autoencoder
 - Depth 4
 - 2 ResNeXt blocks per depth level
 - Skipping connections
 - Dense bottleneck layer
- ► Initial learning rate 5·10⁻⁴
- ▶ 1500 epochs of training

Neural network training: measured data (labels)

Neural network training: synthetic data (input)

Neural network training: predictions

Neural network training: measured data (labels)

Neural network training: labels – predictions

Unseen measured earthquakes ≥ M6.0

Earthquakes of min. magnitude 6 between 2024-01-01 and 2024-04-04 (27 events)

Application: unseen measured data

Application: synthetic data (input)

Application: predictions

Application: unseen measured data (labels)

Application: predictions vs. labels

Application: Event 1 – unseen measured data

BSEG - Event 1 - M7.5 - Near West Coast Of Honshu, Japan - measured data (labels)

Application: Event 1 – synthetic data (input)

BSEG - Event 1 - M7.5 - Near West Coast Of Honshu, Japan - synthetic data (input)

Application: Event 1 – predictions

BSEG - Event 1 - M7.5 - Near West Coast Of Honshu, Japan - predictions

Application: Event 1 – measured data (labels)

BSEG - Event 1 - M7.5 - Near West Coast Of Honshu, Japan - measured data (labels)

Application: Event 1 – overlay

BSEG - Event 1 - M7.5 - Near West Coast Of Honshu, Japan - input vs. labels vs. predictions

Application: Event 1 – spectra

BSEG - Event 1 - M7.5 - Near West Coast Of Honshu, Japan - spectra of input vs. labels vs. predictions

Application: Event 7 – unseen measured data

BSEG - Event 7 - M6.3 - Vanuatu Islands - measured data (labels)

Application: Event 7 – synthetic data (input)

BSEG - Event 7 - M6.3 - Vanuatu Islands - synthetic data (input)

Application: Event 7 – predictions

BSEG - Event 7 - M6.3 - Vanuatu Islands - predictions

Application: Event 7 – measured data (labels)

BSEG - Event 7 - M6.3 - Vanuatu Islands - measured data (labels)

Application: Event 7 – overlay

BSEG - Event 7 - M6.3 - Vanuatu Islands - input vs. labels vs. predictions

Application: Event 7 – spectra

BSEG - Event 7 - M6.3 - Vanuatu Islands - spectra of input vs. labels vs. predictions

Application: Event 22 – unseen measured data

BSEG - Event 22 - M6.2 - Near East Coast Of Honshu, Japan - measured data (labels)

Application: Event 22 – synthetic data (input)

BSEG - Event 22 - M6.2 - Near East Coast Of Honshu, Japan - synthetic data (input)

Application: Event 22 – predictions

BSEG - Event 22 - M6.2 - Near East Coast Of Honshu, Japan - predictions

Application: Event 22 – measured data (labels)

BSEG - Event 22 - M6.2 - Near East Coast Of Honshu, Japan - measured data (labels)

Application: Event 22 – overlay

BSEG - Event 22 - M6.2 - Near East Coast Of Honshu, Japan - input vs. labels vs. predictions

Application: Event 22 – spectra

BSEG - Event 22 - M6.2 - Near East Coast Of Honshu, Japan - spectra of input vs. labels vs. predictions

QC: labels vs. predictions

- Cross-correlation of labels and predictions
- Cross-correlation of envelopes
- ► Identification of maximum lag (ideally 0)

BSEG - stacks of cross-correlations (black) and cross-correlations of envelopes (blue) of labels and predictions of all events

A. Bauer, J. Walda & C. Hammer

Deep learning prediction of earthquake waveforms

QC: labels vs. input data

- Cross-correlation of labels and input
- Cross-correlation of envelopes
- ► Identification of maximum lag (ideally 0)

A. Bauer, J. Walda & C. Hammer

Deep learning prediction of earthquake waveforms

Conclusions

- ► Training of a convolutional autoencoder to predict earthquake waveforms from synthetic data
- ► The trained CNN is largely able to **predict** prominent phases of **unseen earthquake** waveforms
- Quality of results depends on number of measured earthquakes
- QC by stacks of cross-correlations of labels and predictions
- Next steps:
 - Combine data of various stations
 - Improve quality of synthetic data

Thank you for your attention!

alex.bauer@uni-hamburg.de

Acknowledgments

- ► Federal Ministry of Education and Research of Germany (BMBF, 05D23GU5)
- ► IRIS, SAGE
- Instaseis / Syngine
- TensorFlow 2
- Stefan Knispel (University of Hamburg), TEEC GmbH