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Abstract

This research investigates the intricate

relationship between flood insurance claims and

streamflow extremes in the contiguous USA,

challenging the conventional belief of

independence and non-catastrophic nature of

insurable flood losses.

Focusing on the Hurst-Kolmogorov dynamics,

which emphasizes the temporal dependence of

extreme flood events, we explore the

implications of these dynamics on flood

insurance practices and streamflow extremes.

By analyzing the US-CAMELS dataset, we

investigate the clustering mechanisms' impact

on return intervals, event duration, and severity

of the over-threshold events, which are treated

as proxies for collective risk.

Furthermore, stochastic approaches are

developed to explore the correlation between

properties of extreme events and recently

published FEMA National Flood Insurance

Program claims records in an exploratory

analysis.

This study aims to contribute valuable insights

into the temporal aspects of streamflow

extremes, considering the dependencies

identified by the Hurst-Kolmogorov dynamics

and providing essential information for

enhancing the accuracy of flood insurance and

reinsurance practices



A stochastic investigation of the clustering dynamics in streamflow extremes is performed using 

the US-CAMELS dataset.

Clustering of streamflow extremes is associated to aggregate flood insurance claims from the 

new FEMA database under the collective risk concept.

Links of a streamflow-based proxy to actual aggregate flood insurance claims are found to be 

spatially variable, reflecting different types of flood-generating mechanisms in the USA. 

Highlights

Keywords: Flood insurance claims, Hurst-Kolmogorov dynamics, Clustering, Monte-Carlo

simulation, Collective risk assessment, Streamflow extremes, FEMA



Fig. 1 The 671 US-CAMELS stream gauge locations. The selected 360 US-CAMELS 

stream gauge locations are colored orange.

US-CAMELS 

dataset

This analysis is applied on the US-CAMELS 

dataset, which comprises of 671 daily 

streamflow time series from catchments in 

the contiguous United States (CONUS) that are 

minimally impacted by human activities 

(Newman et al., 2014). 

From this dataset, 360 streamflow time series 

with the maximum temporal overlap (namely, 

35 years from 1980 to 2014) and less than 10% 

of missing values were selected. Figure 1 

shows the study area and stream gauge 

locations for the full dataset including the 

finally selected 360 stream gauge locations. 



FEMA’s NFIP

claims records

dataset Federal Emergency Management Agency 

(FEMA) published in 2019 the National Flood 

Insurance Program (NFIP) data, including more 

than two million claims records dating back to 

1970 and more than 47 million policy records

for transactions (FEMA, 2019). 

It is evident that this is a giant contribution for 

supporting scientists and policy-makers on their 

research on how the National Flood Insurance 

Program (NFIP) works, where flood damage 

occurs, and what the costs are.



EVA is widely used and applied as a tool to analyze and study 

statistics on sample values that deviate extremely from the 

mean of the full sample, in order to develop a deeper 

understanding of the sample and precise modeling strategies. 

It generates significant applications across many scientific fields 

such as hydrology, insurance and finance and can be also 

used to predict the occurrence of rare events, such as extreme 

flooding, large insurance losses, crashing of the stock market 

and many others (Reis and Thomas, 2007).

In this manner, generalized extreme value distribution (GEV)

and generalized Pareto distribution (GPD) are introduced as 

a tool for the statistical analysis of maxima or minima and of 

exceedances over a given threshold. 

Methodology: 

Extreme value

analysis (EVA) 

distributions



Methodology: 

Threshold

selection Threshold selection is a challenge in insurance and 

especially in flood insurance practices (Robinson and Botzen, 

2020). The threshold should be chosen such that all losses 

above the threshold are “extreme losses” in the sense of 

the underlying extreme value analysis. 

On one hand, we want to choose a high threshold in order 

to investigate the behavior of the (really) extreme events. On 

the other hand, for the estimation of the parameters in the 

distribution of the extreme losses, we need many 

observations above the threshold to create a solid statistical 

foundation for our conclusions, based on a long sequence of 

values.



In order to characterize the dynamics of 

extreme streamflow values, this study 

performed a POT analysis using four

different percentage thresholds, i.e., 

90%, 95%, 98%, and 99%.

Methodology: 

Threshold

selection

Fig. 2 Diagram that shows the impact of threshold selection on Non-Exceedance 

Probability (CDF) of streamflow of the over-threshold events regarding the observed 

streamflow records as well as the ones that were developed by the process of fitting 

these observed data with the generalized Pareto distribution. Gauge ID: 01552500.



Methodology: 

Collective risk 

model 

in insurance

Sx = X1 + X2 + ··· + XN, (1)

where Xi is the ith claim amount during a certain time 

period, e.g. a year. Apparently Sx = 0 if N = 0. 

The distribution of total claim amounts, considering 

the insurance company’s portfolio as a collective that 

produces a random number N of claims in a certain 

time period, can be described by the collective risk 

model (Kaas et al., 2008).

Collective risk Sx is defined as



Methodology: 

Collective risk 

model

in flood

insurance

Similarly, regarding flood insurance practices and in case 

of an extreme flood event, the collective risk S is the total 

claim amount, considering again the portfolio of 

(re)insured properties as a collective that produces a 

random number N of claims in a certain time period of 

one year in our case. 



Methodology: 

Collective risk 

model

in flood

insurance
where Yj is the jth claim amount proxy (over-threshold 

flow fluctuation severity). Again, the total claim amounts 

S = 0 if N = 0. The definition of collective risk regarding 

flood insurance practices is a proxy of the actual 

collective risk, as it involves hydrological series and not 

actual claim amounts. In this study, regarding the 

aforementioned proxy of temporal collective risk, we use 

the term Proxy Aggregated Losses S.

Denoting the records yt of a time series, a proxy of 

temporal collective risk S is defined by Serinaldi and 

Kilsby (2016) as

𝑆 = 

𝑗=1

𝑁

𝑌𝑗 (2)



Methodology: 

Sequence of 

independent 

variables

A widely used method to create a sequence of independent 

variables is to shuffle (randomize) the series in order to get 

a new series which has the same marginal distribution but 

no correlation; the quantification of the distance between 

the independent and the observed variables is performed 

by comparing specific characteristics, i.e. the annual Proxy 

Aggregated Losses, the duration of the peak-over-threshold 

events and the occurrence frequency of return periods in 

the original time series and in the shuffled one. 

Hence, in order to assess the clustering of extremes of the 

360 observed time series, 100 new shuffled time series were 

reproduced for each one of the 360 original time series.

In order to characterize the dependence 

and the clustering mechanisms, it is 

important to quantify how the time series 

differs from a sequence of independent 

variables.



Methodology: 

The Hurst –

Kolmogorov 

dynamics

The exhibited persistence in many natural processes, 

including streamflow and rainfall dynamics, is known as the 

Hurst phenomenon or Hurst-Kolmogorov (HK) dynamics 

and is quantified by the Hurst coefficient H. 

In order to calculate the Hurst coefficient H and detect the 

potential long-term dependence (or else persistence, 

clustering) of a process, the most accurate method is by 

formulating the Climacogram (Koutsoyiannis, 2010), which 

has been shown to outperform estimators based on the 

autocovariance and power-spectrum (Dimitriadis and 

Koutsoyiannis, 2015). 



Methodology: 

Generalized-HK

(GHK) process
The generalized-HK (GHK) model is applied, which 

exhibits also an HK behavior in large scales but has 

more flexibility in smaller scales (Dimitriadis and 

Koutsoyiannis, 2018; note that a more advanced scheme 

has been introduced that can preserve any number of 

moments; Koutsoyiannis and Dimitriadis, 2021).

The Climacogram of the GHK model is the following, 

where the Hurst coefficient H is bounded between zero 

and one inclusive, q is positive, while λ and q have 

dimensions [x2] and [T], respectively:

In some cases, such as in this study, 

fitting of straight line in the Climacogram 

derived from the observed data cannot 

capture the full variance behavior of the 

process at the whole range of scales. 

Thus, the generalized-HK (GHK) model is 

applied.

𝛾 𝑘 =
𝜆

1 + 𝑘/𝑞 2−2𝐻 (3)



Methodology: 

Symmetric –

Moving 

Average (SMA) 

method

SMA is a general algorithm for producing synthetic time series 

of a physical quantity by preserving its dependence structure. 

In particular, SMA generation scheme for approximating the 

marginal probability function can replicate a natural process 

by exactly preserving a selected number of central moments, 

with four found to be sufficient for various distributions 

commonly applied in geophysical processes (Dimitriadis and 

Koutsoyiannis, 2018).

The algorithm to produce time series with the SMA scheme 

required the first four central moments, the H coefficient of 

each physical quantity (average, maximum and minimum) as 

well as the length of the time series. 

In this study, the symmetric moving 

average (SMA) scheme (Koutsoyiannis 

2000; 2016) is also applied in order to 

develop and evaluate potential modeling 

strategies.



Results: 

Impact of clustering 

mechanisms 

on GEV 

distribution modelling



Fig. 3 Annual peak Non-Exceedance Probability (CDF) diagrams related with GEV 

simulations in linear and logarithmic scale, and the return period (1/(1-CDF)) scale

(Gauge ID: 11528700).



Results: 

Impact of clustering 

mechanisms

on streamflow-based 

Proxy Aggregated Losses



Fig. 4 Proxy Aggregated Losses’s Non-Exceedance Probability (CDF) diagrams in linear 

scale (Gauge location ID: 11528700).



Results: 

Impact of clustering 

mechanisms 

on return periods



Fig. 5 Return period’s Non-Exceedance Probability (CDF) diagrams in linear scale 

(Gauge location ID: 11528700).



Results: 

Impact of clustering 

mechanisms 

on the duration of 

the over-threshold events



Fig. 6 Events’ duration Non-Exceedance Probability (CDF) diagrams in linear scale 

(Gauge location ID: 11528700).



Reproducing 

observed 

clustering 

using 

HK dynamics 

and 

Monte Carlo 

simulations 

Based on the mean Climacogram of the GHK process 

regarding the 360 empirical streamflow time series of the US-

CAMELS dataset, a persistent behavior was indicated with 

parameters 𝐻 = 0.63 and 𝑞 = 6.94 days (Figures 7-8). 

Fig. 7 The mean Climacogram of the 360 selected gauge locations of the 

US-CAMELS dataset.Generalized-HK (GHK) model



Reproducing 

observed 

clustering 

using 

HK dynamics 

and 

Monte Carlo 

simulations

The effect of this dependence structure is tracked on the 

behaviors of POT flows at the annual scale and the estimation of 

the Proxy Aggregated Losses. The behavior of daily streamflow 

in our dataset is found to be consistent with HK dynamics 

(Dimitriadis et al., 2021) characterized by moderate H parameters 

(in the range 0.6-0.7), through Monte Carlo simulations. 

Fig. 8 Hurst coefficient H of each one of the 360 selected gauge locations of the US-

CAMELS dataset.
Generalized-HK (GHK) model



Reproducing 

observed 

clustering 

using 

HK dynamics 

and 

Monte Carlo 

simulations

In order to develop the stochastic simulation of a series with 

generalized long-range dependence, the SMA-GHK model is 

applied by preserving explicitly the first four central moments of 

the sample series. 

The algorithm to produce synthetic time series from the data of 

the observed (empirical) one with the SMA scheme, created by 

P. Dimitriadis (2018), required as input the following: mean (Sm), 

variance (Sv), skewness and kurtosis coefficients (Ss and Sk), 

Hurst parameter of the GHK model (H), scale parameter (q), 

length of synthetic series (N).SMA-GHK model



Reproducing 

observed 

clustering 

using 

HK dynamics 

and 

Monte Carlo 

simulations

Fig. 9 The Climacogram of the gauge location with ID: 07071500 (H = 0.81, q = 1.00 days).

The Climacogram (Figure 9) was formulated and the SMA-GHK 

modelling simulations were developed regarding the USGS 

07071500 gauge located at Eleven Point river near Bardley, State 

of Missouri, USA, with parameters 𝐻 = 0.81 and 𝑞 = 1.00 days.

Generalized-HK (GHK) model



Reproducing 

observed 

clustering 

using 

HK dynamics 

and 

Monte Carlo 

simulations

Subsequently, 1000 synthetic time series through Monte 

Carlo simulations of the USGS 07071500 gauge were 

developed; the diagrams of the Non-Exceedance Probability 

(CDF) of Proxy Aggregated Losses for the four thresholds are 

extracted (Figure 10). 

The Non-Exceedance Probability (CDF) curve of the 

observed Proxy Aggregated Losses (Figure 10) is contained in 

the Monte Carlo prediction limits by the GHK model, 

preserving the HK dynamics and the 4 four moments. In 

contrary, shuffled (randomized) curves have a different

behavior, especially in the tails of the distribution.SMA-GHK model



Reproducing observed clustering using HK dynamics and Monte Carlo simulations

Fig. 10 Proxy Aggregated Losses’s Non-Exceedance Probability (CDF) diagrams of observed, 

shuffled and synthetic time series (SMA-GHK model, Gauge location ID: 07071500).



Is the streamflow-based 

Proxy Aggregated Losses 

informative for the 

dynamics of collective risk 

deriving from actual flood 

claims records?



The annual Proxy Aggregated Losses of the 360 selected gauge locations of the US-CAMELS dataset has 

already been computed, considering the 4 selected thresholds (90%, 95%, 98% and 99%) for the years 1980-

2014. 

Moreover, the published FEMA claims records offers us the opportunity to investigate the validity of the 

developed method on a spatial basis by assessing the correlation between these claims records with the 

results of our study on streamflow POT events. 

The FEMA claims records were distributed spatially on the 21 Hydrological Units and the 50 States. In this 

respect, the Spearman correlation coefficient is evaluated between the annual Proxy Aggregated Losses for 

each one of the gauge locations and the aggregated claims records of the Hydrological Unit and the State 

that a specific gauge location belongs to. 

Is the streamflow-based Proxy Aggregated Losses 

informative for the dynamics of collective risk deriving 

from actual flood claims records?



Fig. 11 Distribution functions of the Spearman correlation 

coefficient between the annual Proxy Aggregated Losses 

of the 360 gauges and the States/Hydrological Units 

claims records that a specific gauge location belongs to.

Fig. 12 Boxplot of the Spearman correlation coefficient between the 

annual Proxy Aggregated Losses of the 360 gauges and the 

States/Hydrological Units claims records that a specific gauge location 

belongs to.

The cumulative distribution functions (Figure 11) and the boxplots (Figure 12) of the aforementioned 

Spearman correlation coefficients for the 360 gauges and for all the selected thresholds follow, showing that, 

in general, considering the aggregated claims of States tends to underestimate the correlation coefficient in 

contrast to the aggregated claims of the Hydrological Units.

Is the streamflow-based Proxy Aggregated Losses 

informative for the dynamics of collective risk deriving 

from actual flood claims records?



The annual Proxy Aggregated Losses of the 360 selected gauge locations of the US-CAMELS dataset has 

already been computed, considering the 4 selected thresholds (90%, 95%, 98% and 99%) for the years 1980-

2014. 

Moreover, the published FEMA claims records offers us the opportunity to investigate the validity of the 

developed method on a spatial basis by assessing the correlation between these claims records with the 

results of our study on streamflow POT events. 

The FEMA claims records were distributed spatially on the 21 Hydrological Units and the 50 States. In this 

respect, the Spearman correlation coefficient is evaluated between the annual Proxy Aggregated Losses for 

each one of the gauge locations and the aggregated claims records of the Hydrological Unit and the State 

that a specific gauge location belongs to. 

Is the streamflow-based Proxy Aggregated Losses 

informative for the dynamics of collective risk deriving 

from actual flood claims records?



Subsequently, the USA maps that show the Spearman correlation coefficient between the Proxy Aggregated 

Losses and the Hydrological Units’ claims records for all the gauge locations and the selected thresholds 

follow (Figure 13), highlighting the spatial distribution of the correlation coefficient and indicating the 

areas the latter is higher or lower. 

A spatial pattern is evident, showing that higher values of Spearman correlation coefficient emerge in West 

Coast, in comparison with the ones in East Coast, which are significantly lower.

Is the streamflow-based Proxy Aggregated Losses 

informative for the dynamics of collective risk deriving 

from actual flood claims records?



Fig. 13 Spearman correlation coefficient for each one of the selected 360 gauges 

between annual Proxy Aggregated Losses and the claims records of the Hydrological 

Units that a specific gauge location belongs to for four different thresholds, 1st (top) 

row 90%, 2nd 95%, 3rd 98% and 4th (bottom) row 99%.



Box plot of Spearman Correlation coefficient between Proxy Aggregated Losses and the Hydrological 

Unit’s aggregated claims

Is the streamflow-based Proxy Aggregated Losses 

informative for the dynamics of collective risk deriving 

from actual flood claims records?

Fig. 14 Box plot of Spearman correlation coefficient between Proxy Aggregated Losses 

and the Hydrological Unit’s aggregated claims that the gauge location (ID: 03574500) 

belongs to, for all thresholds.

Data from Paint Rock River (ID: 03574500) show that the dominant clustering mechanisms introduce significant correlation.



Conclusions



Conclusions on 

clustering mechanisms

Regarding the impacts of clustering mechanisms on streamflow extremes, the probabilistic properties of 

a streamflow-based proxy for aggregated losses, return periods, and the duration of the over-threshold 

events from the US-CAMELS dataset, were investigated for four different thresholds.

Results show that for the clustering indices, the divergence between the properties of the observed and 

the shuffled (randomized, considered as independent) time series is pronounced in many gauges.

The latter suggests a deviation from the independence assumption and a clear indication for the existence 

of clustering in streamflow extremes which is further quantified through a stochastic investigation 

based on the Hurst-Kolmogorov dynamics. 



Conclusions on 

HK dynamics

Based on the mean Climacogram and the GHK process regarding the 360 empirical streamflow time series 

of the US-CAMELS dataset, the Hurst parameter was estimated 0.63, which indicates a persistent behavior.

Empirical findings regarding the properties of observed streamflow timeseries were also reproduced 

through Monte Carlo simulations based on the GHK and SMA-GHK model, preserving the HK dynamics 

and the four moments.

The Monte Carlo prediction limits captured the observed patterns, whereas in contrary, shuffled 

(randomized) curves showed a different behavior, especially in the tails of the distribution.



Conclusions on 
the association with the FEMA’s NFIP actual claims records

The association between the streamflow-based Proxy Aggregated Losses used herein and the FEMA’s NFIP 

actual claims records is validated by computing the Spearman correlation coefficient between the two. 

A clear spatial pattern emerges from this investigation, showing that higher values of the correlation emerge 

in West Coast, in contrast to the ones in East Coast, which are significantly lower. 

As the Proxy Aggregated Losses refer to fluvial (river) flooding, these results suggest that this type of 

flooding is dominant in West Coast. In contrast, it is revealed that flooding events that provoke insurance 

claims in the East Coast exhibit a different and more complicated pattern. 

Furthermore, the association of the streamflow-based Proxy Aggregated Losses to actual number of claims 

records of the Hydrological Unit that the gauge location belongs to, was further validated by comparing 

results from the observed to the shuffled (independent) time series, which showed no significant correlation.



General Conclusion

Overall, the apparent existence of clustering mechanisms in streamflow extremes is shown to be associated 

to clustering in related insurance claims in the USA, yet with spatially variable patterns reflecting different 

flood generating mechanisms. 

Disregarding such clustering dynamics may lead to inaccurate risk assessment processes and significant 

financial impacts for the insurance and reinsurance sectors, in case of unpredictably large values of aggregate 

claim amounts stressing their reserves.
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