EGU24-12378
 Comparing extreme sub-daily rainfall projections from temperature-scaling and convection-permitting climate models across an Alpine gradient

${ }^{1}$ Department of Land Environment Agriculture and Forestry, University of Padova, Legnaro, Italy (rashid.akbary@phd.unipd.it); ${ }^{2}$ Department of Civil, Environment, and Architectural Engineering, University of Padova, Padova, Italy; ${ }^{3}$ Research Center on Climate Change Impact, University of Padova, Rovigo, Italy

1. Background and motivation

Understanding projected changes in sub-daily extreme rainfall in mountainous basins can help increase our capability to adapt against current and future flash floods and debris flows. Leveraging from two recent advancements:
1). High-resolution convection-permitting climate models (CPMs): more realistic representation of convection than coarser-resolution regional models.
2). Novel non-asymptotic extreme value approaches: estimation of rare return levels with reduced stochastic uncertainty, even from short datasets
Objective: to compare the changes in extreme rainfall projections from apparent Clausius-Clapeyron (CC) temperature scaling against those obtained from convection-permitting climate model simulations.

2. Data and study area

5 CPMs from the CORDEX-FPS project (Ban et al, 2021), remapped on common $\sim 3 \mathrm{~km}$ grid

3. Methodology

1. Statistical Method

based on Simplified Metastatistical Extreme Value distribution (SMEV):
> non-asymptotic method based on the idea that extremes are samples from ordinary events x 2-parameter Weibull distribution to fit the upper tail of the distribution of ordinary events x

$$
F(x, \lambda, \kappa)=1-e^{\wedge}\left(-(x / \lambda)^{\wedge} \kappa\right)
$$

* Applied at each grid point on hourly time series
* Rainfall durations: $1,3,6,12,24 \mathrm{~h}$

2. Assessment of changes

At each grid point ...	single member i ensemble
1) SMEV	Return levels up to 100 yr	
2)CC-Scaling	$I_{f u t}=I_{\text {hist }}\left[\frac{100+R_{s c}}{100}\right]^{\Delta T}$	
> Temperature to use:	- Mean annual temperature - Temperature during extreme event	op 20% of ordinary events)
3) Future change C	$C_{i}[\%]=\frac{X_{\text {fut }}-X_{\text {hist }}}{X_{\text {hist }}} \cdot 100$	$C[\%]=\operatorname{median}(\mathrm{Ci})$

4. Results and take home messages

Bias evaluation of models' temperature

Temperature difference between historical (1996-2005) and far future periods (2090-99) considering elevations for models ensemble

\rightarrow Temperature changes: elevation has an influence on changes on temperature during storms. Higher elevation \longrightarrow larger temperature changes in the future.
$>$ CPM changes: CPM changes are influenced by elevation across all durations and return periods. Higher elevation \longrightarrow higher changes.
$>$ Final remarks: CC-scaling does not fully capture changes in CPMs.
When using storm temperature, it underestimates future changes in 1-hour rainfall, particularly at higher elevations, while for 24-hour rainfall, the underestimation is more pronounced at medium elevations.
Conversely, when using mean annual temperature, CC-scaling consistently overestimates extreme precipitation changes compared to CPMs and fails to account for elevation effects.

Changes in return levels of CPM models ensemble and CC-scaling with respect to different elevation (between historical (1996-2005) and far future periods (2090-99))

[^0]
[^0]: This research has been supported by the Fondazione Cassa di Risparmio di Padova e Rovigo (Excellen
 Resilience Plan - NRRP, Mission 4, Component 2, Investment 1.3-D. D. 1243 2/8/2022, PEOOOOOOO5)

