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INTRODUCTION

Fig. 1. A schematic view of the fault 

structure and complex alterations

Significance:

➢Fluid pulse and flow 

channeling [1, 2]

➢CO2 & oil leakage [1]

➢High fluid pressure [2]

➢Earthquake risks [3]

➢Thermal alterations [4]

Challenges and Limitations:

➢In situ data sparsity: core integrity concerns & technical

difficulties [5-8]

➢Laboratory experiments: equipment disparities & damage

threshold [5, 7, 8]

➢Outcrop measurements: diverse methods, dissimilar sites,

weathering, and sampling [5-8]

Questions: How does the presence of complex fault

structures, such as branches, multiple cores, and

asymmetric damage zones, impact permeability?

Objective: Scaling relationships for permeability of the fault

structures

Scaling relationships:

DI = C.r -0.8        Various lithology and D (C fault dependent) [8]

DI = DI0.r 
-a             Carbonate rocks; 0.5<D<516 m; DI0=1.6

a=0.95 (D<100 m); a=0.82 (D>100 m) [7]

K=C.(DI0.e
(-r(b+D)/aD) )y           C=2.45×10-20 & y=1.48; Granite [5]

KDZ=Permeability of damage zones; KH=permeability of host

rocks; DI=Damage intensity; D= displacement; r= distance
from core; DZ=damage zone; RMP=Rock mass permeability

METHODS RESULTS

Fig. 4. Faults F4-F5 

Fig. 7. Faults in the tunnelFig. 6. Lithology

Fig. 2. The study area

Fault F2

Fig. 3. Faults F1-F2

Fig. 5. 3D structure of F4 & F5

Fig. 9. Schematic asymmetry

Methods:

➢Outcrop/subsurface

➢3D models

➢Statistics/regression

➢Asymmetry

CONCLUSIONS

Borehole intersection
Outcrop measurements
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Fig. 11. 3D RMP models

Fig. 12. RMP 

along BH22 

Fig. 13. RMP

alterations within F1 

(a) (b)

Fig. 14. RMP within F4: 

(a). BH6, Depth=1769 m.s.l;

(b). BH10, Depth=1700 m.s.l

Fig. 10. Statistical processing

and validation

➢Significant factors: E (elastic modulus (GPa)), n (porosity) 

(%), r (distance from the core r (m))

➢Power law results in the highest R-square 

➢RMP (millidarcy)=102129.8(r -0.678).(n/E) 1.443

➢Validation database confirmed no overfitting

➢Limitations: sedimentary rocks, D<5 m, and depth<300 m

MULTIPLE CORE

Fig. 15. RMP (millidarcy) modulations in multiple 

core Fault F2 in BH2 
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Fig. 8. Pumping tests
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➢ This scaling relationship incorporates damage asymmetry

➢ Utilizing in situ data circumvents the impacts of weathering,

sampling bias, and assumptions inherent in micro-damage

analysis on outcrops or laboratory experiments

➢ Having a power of -0.678, relatively comparable to
previous works’ value of -0.8 [7,8], can confirm the

generality of RMP=102129.8(r -0.678).(n/E) 1.443

➢ This scaling relationship is developed for faults with D<5 m

within carbonate rocks

➢ RMP values enhance within intersections of two damage

zones
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Fig. 16. Intersection F2-F5

Intersections:

➢ Higher damage 

intensity & RMP value 

within intersections

➢ Similarities to multiple 

core faults

➢ A scaling equation? 
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