

High-resolution 4D GPR data acquisition strategy to monitor fast and small-scale subsurface flow processes

Funded by

Deutsche
Forschungsgemeinschaft

Sophie Marie Stephan¹, Conrad Jackisch², Jens Tronicke¹, Niklas Allroggen³

¹Universität Potsdam, Germany; ²TU Bergakademie Freiberg, Germany; ³DB Engineering & Consulting GmbH Bremen, Germany

Contact: sophie.stephan@uni-potsdam.de

Motivation

- Understanding fast (minutes) and small scale (mm-cm) subsurface flow processes demands for measurement techniques with high temporal and spatial resolution
- Ground-penetrating radar (GPR) considered as a suitable non/invasice geophysical tool for efficiently monitoring such flow processes in 4D (repeated 3D surveys)
- Although case studies indicate the potential of 4D GPR, little is known regarding the resolution and repeatability limits
- We present systematic irrigation experiments to investigate and quantify these limits

Systematic irrigation experiments monitored with GPR

Field location

- Field plot (seperated into two areas (spot A, B) at the Fieldlab for Digital Agriculture of the Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) in Potsdam, Germany
- At each spot, two recurrent irrigation experiments monitored with repeated 3D GPR measurements (4D GPR)

Evaluation of 4D GPR data

Continuity of data acquisition, resolution:

- Evaluating accuracy in positioning, consistent crossline (Δx) and inline (Δy), consistent temporal interval (ΔT) between individual 3D data sets

Target values for resolution (dashed black lines in figure):

- spatial: Δx , $\Delta y < 1/4 \lambda$ (< 0.04 m at our field site)
- temporal: $\Delta T < 10$ min

Experimental values for resolution:

- spatial: Δx , Δy < 0.04 m
- temporal: $\Delta T < 7$ min

 $\mu(\Delta x)$ - mean crossline trace spacing within single 3D GPR data set $\mu(\Delta y)$ - mean inline trace spacing within single 3D GPR data set

Background variations, repeatability:

- Evaluating data recorded in initial phase using
 - 1) amplitude differences between mean 3D data set and single 3D data sets
 - 2) attribute-analysis using the structural similarity attribute (SSA), which is sensitive to traveltime changes
- Small amplitude differences and little shifts in traveltime (high SSA values): high 4D GPR data repeatability
- Experiment specific SSA threshold: SSA values < 0.9 indicate changes induced by water infiltration

Selected profile extracted from 3D GPR data sets recorded during initial phase at spot A compared to corresponding mean profile

Decay Phase: 4D GPR measurements plus TDR sensing at intervals of: 20-30 min

Selected profile of amplitude differences (gray) and structural similarity attribute (SSA) (red) between mean and selected profiles from initial phase at spot A

Summary

- 4D GPR measurement strategy and analysis with structural similarity attribute (SSA) provides information about small scale, near-surface flow processes with: high repeatablility (SSA < 0.9, mean amplitude difference of ~1%) so far unreached temporal and spatial resolution of ~7 min and ~0.03 m
- Monitoring of initial conditions important for analyzing data quality and defining SSA threshold for later data analysis and interpretation