The Role of Soil in Forest Drought Response: Remote Sensing-Based Monitoring of Disturbance Hotspots in Central Europe

B. Putzenlechner1, P. Koal2, S. Karel3, M. Kappas1, M. Löw4, P. Mundhenk2, A. Tischer5, J. Wernicke2, T. Koukal4

1 Institute of Geography, Department of Cartography, GIS and Remote Sensing, Georg-August-University, Göttingen, Germany
2 Forestry Research and Competence Centre, ThüringenForst AG, Gotha, Germany
3 Federal Research and Training Centre for Forests Natural Hazards and Landscape, Vienna, Austria
4 Formerly Federal Research and Training Centre for Forests Natural Hazards and Landscape, Vienna, Austria
5 Institute of Geography, Chair of Soil Science, Friedrich-Schiller-University, Jena, Germany

Introduction
Prolonged drought and increased susceptibility to biotic stressors have led to a far-reaching calamity in forests dominated by Norway spruce (Picea abies) across Central Europe. European beech (Fagus sylvatica) has suffered from crown defoliation and increased mortality. The drastic consequences for forestry and ecosystems urge for comprehensive insights to guide future forest management. The recent drought represents an experimental setting for applying remote sensing-based anomaly detection to understand the role of site conditions for drought response. As quantitative information on soils is scarce and usually available at coarse spatial resolution, knowledge on the role of soil properties is limited. To close this gap, our study pioneers a fine-scale assessment on the role of soil properties based on satellite remote sensing-derived forest disturbance.

Methods
We applied an existing forest disturbance modeling framework, based on Sentinel-2 time series data on 340 km² in Central Germany (Fig. 1), representing regions with hotspots of forest disturbance. Forest disturbance information was intersected with fine-scale soil information (10,000 km²) based on roughly 2,870 soil profiles in three study areas. We then calculated the proportion of the disturbed area 1a) in different soil types, 2) with different root nutrient availability in forest stands of Norway spruce or European beech. Available water capacity ([AWC]) in forest stands of Norway spruce or European beech.

Results & Discussion
Our approach allowed for a reconstruction of spatio-temporal-dynamics of forest disturbance on 4-month spatial resolution over the initial detection period (2019 to 2021) of the recent drought (Fig. 1, 2). Stands of Norway spruce were most affected on deep Cambisols with medium to high AWC (90 to 160 mm) and rather low stone content (Fig. 3). Overall, we could not find evidence for pronounced disturbance on shallow soils or soils with high stone content. This finding coincides with field studies, associating lower risk of spruce bark beetle attacks with stands on chronically dry soils [2]. The drought response of beech seemed less clearly directed to soil properties, but based on our results, we support the general concern on drought vulnerability of this species [3]. Although long-term post-drought effects are unknown, stands initially affected did not necessarily develop the highest proportions of disturbed area (Fig. 2), thereby indicating recovery or adaptive mechanisms.

Conclusion
We conclude that the integration of remote sensing-based forest disturbance monitoring with fine-scale soil information allows insights into soil-related drought risks. In view of the currently still high level of spruce die-back due to bark beetle infestation, disturbance in the hotspot regions we investigated will hardly be stopped. Nevertheless, other, more Northern areas with a higher proportion of spruce could benefit from our findings, by identifying vulnerable stands and target in situ monitoring at an early stage of drought.

References

Acknowledgement
We thank the Austrian Research Center for Forestry to carry out the forest disturbance monitoring on their infrastructure. We also acknowledge the program “Wiederbewaldung und Waldumbau” by the Free State of Thuringia to increase personnel resources in forest research.

Contact: birgitta.putzenlechner@uni-goettingen.de