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CMIP6 Models used in the study 
 
To analyse the historical and future simulated characteristics of MHWs, we use daily SST from 
14 global climate model (GCM)s derived from Coupled Model Inter Comparison Project Phase 
6 (CMIP6) database (more details are provided in the Table 1 in S1). Historical simulations 
from 1982 to 2014 and the future greenhouse gas emissions scenarios of Representative 
Concentration Pathways (RCP), which is integrated with shared socioeconomic pathways 
(SSPs) are selected from 2015 to 2100 (Eyring et al., 2016; Scafetta, 2023).   
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Table 1. Models that used for the study 
 
 

  Institute  Institution ID model Ocean Model resolution 
(km) 

grid country reference 

1 Commonwealth Scientific and 
Industrial Research  
Organization & Australian 
Research Council Centre of  
Excellence for Climate 
System Science, Australia 
(CSIRO-ARCCSS) 

CSIRO-ARCCSS CSIRO-
ARCCSS.ACCESS-
CM2 

Modular Ocean Model 
v5 (MOM5) 

100 360x300 Australia 
 

2 CSIRO-ARCCSS CSIRO-ARCCSS CSIRO.ACCESS-ESM1-
5 

MOM5 100 360x300 Australia 
 

3 Centre National de 
Recherches Meteorologiques 
(CNRM) 

CNRM CNRM-
CERFACS.CNRM-CM6 

NEMOv3.6 100 362x294 France 
 

4 Institut Pierre Simon Laplace 
(IPSL) 

IPSL IPSL.IPSL-CM6A-LR NEMOv3.6 100 362x332 France 
 

5 Japan Agency for Marine-
Earth Science and Technology, 
Atmosphere and Ocean 
Research Institute, The 
University of Tokyo, National 
Institute for Environmental 
Studies (NIES), RIKEN 
Center for Computational 
Science 

MIROC MIROC.MIROC6 CCSR Ocean 
Component Model 
(COCO4.9) 

100 360x256 Japan 
 

6 Max Planck Institute for 
Meteorology 

MPI MPI-M.MPI-ESM1-2-
HR 

Max Planck Institute for 
Meteorology Ocean 
Model (MPIOM1.6.3) 

50 802x404 Germany 
 

7 Meteorological Research 
Institute 

MRI MRI.MRI-ESM2-0 MRI Community Ocean 
Model version 4 (MRI. 
COMv4) 

100 360x363 Japan 
 

8 
 

AWI AWI.AWI-CM-1-1-MR FESOM1.4 25 unstructured Germany 
 



9 EC-Earth Consortium, Europe EC-Earth-
Consortium 

EC-Earth-
Consortium.EC-Earth3 

NEMOv3.6 100 363x292 Europe 
 

10 EC-Earth Consortium, Europe EC-Earth-
Consortium 

EC-Earth-
Consortium.EC-Earth3-
Veg 

NEMOv3.6 100 362x292 Europe 
 

11 Nanjing University of 
Information Science and 
Technology, China 

NUIST.NESM3 NESM3 NEMOv3.4 100 362x292 China 
 

12 National Center for 
Atmospheric Research, EUA 

NCAR.CESM2 CESM2 Parallel Ocean Program 
version 2 (POP2) 

100 360x180 Europe 
 

13 Center for International 
Climate and Environmental 
Research, Oslo, Norwegian 
Meteorological Institute, Oslo, 
Nansen Environmental and 
Remote Sensing Center, 
Bergen, Norwegian Institute 
for Air Research, Kjeller, 
University of Bergen, Bergen, 
University of Oslo, Oslo, Uni 
Research, Bergen 

NCC.NorESM2-
LM 

NorESM2-LM Miami Isopycnic 
Coordinate Ocean Model 
(MICOM) 

100 360x384 Norway 
 

14 Canadian Centre for Climate 
Modeling and Analysis, 
Canada 

CanESM5 CanESM5 Nucleus for European 
Modelling of the Ocean 
(NEMOv3.4.1) 

100 361x290 Canada 
 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
Fig. 1: Globally averaged observed and model MHW characteristics 
 
 
 
 
 
 
 
 
 
 
 
 
MHW days, (b) MHW maximum intensity for the period of 1982 to 2014. Black thick line shows the observed 
changes in MHW properties. The thick red line in (a) is the multi model ensemble mean (MME) for total MHW 
days, and (b) thick green line is the MME for maximum intensity.  Smaller red lines (a), and green lines (b) 
indicate the output from individual MHW characteristics. 
 
 

In this model performance evaluation process, we constructed the target diagrams and 

Taylor diagrams (Fig 2), to study about the statistical differences between model and the 

reference data (observation). These two diagrams are useful; hence they provide graphic 

summary how close the models to the observations. At the same time these two analyses 

provide several statistical metrics, that indicate the quantitative agreement with models and 

observations. Here we used main statistical metrices are correlation coefficient (R), the root-

mean-square difference (RMSD), standard deviation (STD). The target diagram is derived by 

analyzing the bias, unbiased root mean square difference, and root mean square difference 

(RMSD), and the outputs displayed in the cartesian coordinates system where the x-axis 

indicate the RMSD’ (variation of the error) and the y axis represent the bias (B). These three 

metrices can be combined using a one equation as follows:  

𝑅𝑀𝑆𝐷! =	𝐵! +	𝑅𝑀𝑆𝐷′!+ 

The RMSD is the distance from any point to the origin. 
 
 
 
 
 
 
 



Fig. 2: Model evaluation based on target diagram and Taylor diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) Target diagram and the (b) Taylor diagram for all selected models for the sea surface 
temperature predictability in the global oceans. Each model, represent by different symbols. 
 
 
 
 
Bias adjustment in model data 

In this study we tried to reduce the inconsistencies between the simulated model outputs 

and observed outputs through bias correction (BC) method. In our work, we utilized a widely 

used univariate bias adjustment method known as quantile delta mapping (QDM) (Adeyeri et 

al., 2023; Cannon et al., 2015; Jose & Dwarakish, 2022; Maurer & Pierce, 2014). This method 

is employed to address biases in GCMs across various aspects such as the trend (Adeyeri et al., 

2023). By applying QDM, we aimed to preserve the future climate change signal in the 

simulated outputs as it’s a parametric quantile mapping method that can be used to preserve 

the trend in all quantiles (Cannon et al., 2015). We used this method as its minimize the bias in 

the mean of the climate models compared to the observational in spatial and temporal scales 

(Costa & Rodrigues, 2021; Maurer & Pierce, 2014). The main point here is that it use a 

transformation function to the future climate model outputs such as xhist, fut for variables like 

temperature it absolute changes will be preserved based on the following equation. This method 



is applied to each model's outputs, where we utilize a calibration period from 1985 to 1999, 

and a validation period from 2001 to 2014. 

 
 
 
Fig. 3: Multi model mean bias and bias adjusted CMIP6 models 

 

 
 
 
 
 
 
 
 
 
Spatial average annual time series of (a) MHW frequency, (b) MHW total days, (c) MHW cumulative intensity 
where MMM of CMIP6 data before (black line) and after the QDM bias adjust (blue line), and plot together 
with observational output(red line). The small grey lines indicate the all 14 CMIP6 models, and their capability 
of detecting MHW properties particularly.   
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