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analyze the AMOC (Atlantic Meridional Here, we present five high resolution 33 Age [ka BP] 231p3 /230Th proxy
Overturmng Circulation) variability throughout the Holocene 231Pa/230Th records (Fig. 3a) 0 2 4 6 8 10 12 < The absolute 231Pa/230Th ratios of the individual sites
Holocene based on several marine sediment cores from covering the western North Atlantic (Fig. 2), 0.16 -7t 13 differ, because local 231Pa/230Th within one overturning
the western North Atlantic in high temporal resolution including two new records from this study, 014 ;/ = Tﬂ\a;;r £+ T IrT -3 t cell is a function of e.g. traveling distance and water
(multi-centennial), by utilizing the 231Pa/230Th proxy. two extended data sets from [7] and [8], E s L2 ) T Tk I<T . LN"m\T-------"-- e X depth [9]. #'Pa/>*°Th of ODP 983 behaves inversely to
This proxy indicates bottom water advection strength and [6]. Additionally, biogenic Opal 012 1/1/' m‘f NG TI-M\I\ > 4 T ] the other sites, caused by the proximity to deep-water
and has been previously applied mainly to older time (bOpal) content of the respective cores g I I 4 Q formation areas and higher particle fluxes at this
periods [1-4]. Here we aim for better connecting the was measured, to evaluate the influence of 0.1 21DP 92§03 (O8N ) e production ratio— latitude.
paleo-circulation 231Pa/230Th-based records of the last varying particle fluxes on Pa. 0.08 bOPpaa/I r _
deglacial with high resolution Holocene paleo-data. 0.12 Holocene
— 231pg/230Th  and  bOpal show no 01 Long-term trends or changes of the AMOC strength
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corr(?latlon, sgggestmg that the effect of SR U Y S cannot be identified over. the .I-.Iolocene. However,
Both 231Pa and 23°Th are homogeneously produced by varying particle fluxes only plays a < 0.08 Ifl\E/L\E/ull\ ] smaller, short-term changes in individual records can be
decay of U in the water column. With 231Pa being less subordinate role. The absolute 231Pa/230Th T~ Q observed.
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particle reactive than 23°Th, 231pa is preferentially ratios vafr}I/ betyvegn the core Ioczlztot(;lonsc,| ooni8e0. 2(3/989m)_ > ) _ § » Low Holocene multi-centennial AMOC variability
advected by the AMOC (Flg 1) Inner-profile variations are more subdue 0.04 —?3'Pa/?*Th 0 g
. Low 231Pa/230Th: higher 231Pa export — stronger for the last 10 ka. The most northern and 0.1 b0pal - 10 = 8.2 Event
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. i oh 231p4 /230Th- 231 Pa/23Th ratios at the end of the 0.08 Pa/22%Th [7] Pa/2°Th [1] S ratios for a short time period over the 8.2 event,
High #23'Pa/%3°Th: lower 3'Pa export — weaker Al E- Opa e 2 e e clowd e AMOC. Given th
AMOC Younger Dryas and the beginning of the & T L T suggesting a possible slowdown of the . Given the
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o ot Holocene, while the other cores show g— 0.06 — —T.’-‘.ﬁa’../};@ff-I% i YTt J{;,r 4 O low a.mplltude and not sufficient temporal resoluthn,
e decreasing ratios (Fig. 3a). JEER. _fph; SRR TENAL TS T e *_':\r o 5 guestions about the AMOC's response to a potential
p,of,‘f?c';m U > 1P p,od'f,“c"ﬁvny oon e O W gt W I S = 022N i meltwater input during this event [10] still remain.
21pg/29Th = 0,003 s A GAM (generalized additive model) was 01 — ~ 10 » Possible AMOC slowdown over the 8.2 event
KN140-2-51 GGC (1790m) (2985m) ODP 1059 |
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Adm“"" A, normalized 231Pa/230Th profiles of this study = og {0002 IS 4.2 Event
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207 (Fig. 3a). Overall, this fit shows a low & 15— \T T\;___.___/ - 6 = ODP 1063 shows higher 231Pa/?3°Th during the 4.2 event,
5 A variability with deviations from the & . _'*’L\T/L %\T\—: ;;_pr—L\ -4 & while the other cores do not show this feature. These
Holocene mean of about * 5%. v - 7 : h , = ! elevated ratios are accompanied with high lithogenic
_ However, two small peaks of higher - £ 232Th fluxes and can therefore be explained by increased
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normalized 231Pa/230Th can be observed in ) , . i . o . 2 bottom scavenging of “>*Pa, probably caused by benthic
Fig. 1: Schematic representation of the 231Pa/23°Th proxy in the this fit, coinciding with the 8.2 and 4.2 Age [ka BP] storms [11], induced by the transfer of eddy kinetic
Atlantic Ocean [5]. NADW= North Atlantic Deep Water. events. energy from the surface to the deep ocean.
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Fig. 2: Core locations.
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