Integrated social-ecological and governance analysis of the water-energy-foodecosystems Nexus in a mountain catchment in Northern Italy

3

Questions? Comments? enrico.lucca@unifi.it

^a Department of Agriculture, Food, Environment and Forestry (DAGRI), Università degli Studi di Firenze, Italy; ^b Land and Water Management Department, IHE Delft Institute for Water Education, Delft, the Netherlands; ^c CMCC Foundation – Euro-Mediterranean Centre on Climate Change, IAFES Division, Sassari, Italy; ^d UNESCO Chair in Hydropolitics, University of Geneva, Genève, Switzerland; ^e Environmental Governance and Territorial Development Hub (GEDT), University of Geneva, Genève, Switzerland

Introduction

- > The Alps are the "water towers" of Northern Italy, contributing on average to 53% of the discharge in the River Po^[1]
- Changes to the total and seasonal availability of alpine water resources induced by climate change cause trade-offs between water dependent sectors, which became evident in recent water scarcity and **drought** conditions;
- The Water-Energy-Food-Ecosystems (WEFE) Nexus approach has proven useful to understand how these sectors are intrinsically interconnected at a biophysical and technological level;
- > The governance implications of WEFE interdependencies and the institutional interlinkages between the sectors have received, so far, less attention.

The objective of this study is to qualitatively assess water scarcity in terms of:

- Interlinkages between social-ecological processes across the WEFE sectors
- Interconnections between sectoral venues of decision making and policy formulation

Methodology

*Action Situation: a venue of decision-making where social actors interact and produce an outcome^[2]

Data source

4.2

- Stakeholder Interviews
- Observation of stakeholder meetings
- Regional policies, plans
- News' articles

Torrente Orco catchment, River Po Basin, Northern Italy

Case study

River Po basin

- Large storage capacity in upstream hydropower reservoirs
- Large downstream withdrawals for irrigation (corn, grassland, cereals, soya)
- Frequent water scarcity conditions (granted concession vs available water)
- Water resources partly allocated outside the catchment

Enrico Lucca^{a,b}, Luigi Piemontese^a, Janez Sušnik^b, Sara Masia^{b,c}, Giulio Castelli^{a,d,e}, Elena Bresci^a

Results: social-ecological interlinkages

Results: governance interconnections

AS	Name of Action Situation
AS1	Renewal of large hydropower concession
AS2	Renewal of irrigation concessions
AS3	Update to regional e-flow regulation
AS4	New drinking water supply concession
AS5	Reservoir operation
AS6	Irrigation at farm level
AS7	Crop pattern at farm level
AS8	E-flow experimentation by water users
AS9	Groundwater withdrawal concession
AS10	Energy and Environmental Plan
AS11	Rural Development Plan
AS12	Water Protection Plan
AS13	River Po Basin Water Balance Plan
AS14	E-flow Directive
AS15	Permanent water scarcity observatory of the Po River Basin
AS16	Common Agricultural Policy
AS D1	Coordination dialogue energy-agriculture
AS D2	Water allocation plan between irrigation districts
AS D3	Guidelines for drought management
4.3	Results

processes:

- AS 16 \rightarrow corn monocolture.
- Monitoring for decision making

5

References

[1] Viviroli, D. and Weingartner, R., 2004. 'The hydrological significance of mountains: from regional to global scale'. Hydrology and Earth System Sciences 8(6), pp. 1 016–1 029 [2] McGinnis, M.D., 2011. An Introduction to IAD and the Language of the Ostrom Workshop: A Simple Guide to a Complex Framework. Policy Stud. J. 39, 169–183. https://doi.org/10.1111/j.1541-0072.2010.00401.x

Acknowledgment

The Authors gratefully acknowledge the 'PON Ricerca e Innovazione 2014-2020: Istruzione e ricerca per il recupero—REACT-EU' Programme of the Italian Government, through the PhD scholarship Granted to Enrico Lucca (scholarship n. DOT137M5SZ n. 2, 2022–2024)

OSPP Contest

Results

Examples of interplay between governance and social-ecological

Setting requirements on social-ecological processes e.g., AS $3 \rightarrow$ e-flow; AS $9 \rightarrow$ efficiency of irrigation;

e.g., water flow in Orco river, \rightarrow AS D3, AS 5; saltwater intrusion Po Delta \rightarrow AS 15; good status of water body \rightarrow AS 8, AS 3.

Conclusions

Droughts reinforces uptake of decision making at operational level into higher hierchical levels (AS D1 \rightarrow AS 1; AS D2 \rightarrow AS 3) **Multi-purpose use of hydropower reservoirs** is enabled by informal agreements at the operational level (AS 4, AS 5, AS D1) □ Need to further support **transformation of local agriculture** to a more profitable and climate-resilient sector.

Q Risk of over-reliance on existing hydropower reservoirs?