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Context Approach

Numerical simulations

Instabilities from DNS Unstable modes
✈ Contrails are themain contributor to aviation-related radiative

forcing [Lee et al., 2021]

✈ But there are numerous uncertainties on the contribution
amount

✈ Improoved physical modeling needed : we focus on the plume
spatio temporal distribution

Figure 1: 3 contrails of different shapes at ∼ 1 min
behind the aircraft

✈ and the effects of the aircraft wake . . .

Figure 2: 5 phases of the jet/vortex interaction

. . . as well as atmospheric stratification [Spalart, 1996]

✈The plume is modelled in interaction with the wake vortices
and stratified atmosphere in a vertical plane

➼ we see the primary and secondary wakes

Figure 3: Vorticity field for t = 4.5, Fr−1 = 1

✈ 2D multiparametric study of this interaction with at-
mospheric stratification (Boussinesq approximation)
[Saulgeot et al., 2023]

➼ plume dispersion as a function of atmospheric stratification
(Froude)

Figure 4: Ice mass (levels) and vortex trajectory
(dashed lines), t = 5 τ0. Dimensioned for a

medium-weight Boeing B777 and RHi = 130 %

✈ 2D stability is carried out to understand the processes leading
to wake and plume disappearance

➼ 2D instabilities can be precursors, later masked by 3D effects

✈ Atmospheric stratification ➼ Brunt-Väisälä frequency N

✈ Natural motion of the vortices: descent at constant speed W0
caused by mutual induction

➼ Characteristic time of the vortex dipole: τ0 = b0

W0

✈ Effective stratification measured by the inverse of the Froude
number Fr−1 = Nτ0

✈ Boussinesq approximation

✈ Nek5000 spectral code, validation with published cases

✈ Stability analysis: linearized equations
➼ Local approach: the base flow is a 1D extracted profile (gray

line in the y direction if fig. 5, z being the vertical direction)
➼ Perturbation: (ũ, p̃, θ̃)(y) eikz+σt k ∈ R+,σ ∈ C

→ →
Fr−1 = 0.6
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Figure 5: Vorticity fields
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Figure 6: Growth rate as a function of wavelenght. L:
jet width; uz,max: maximum vertical velocity in the jet.

Fr−1 = 0.6

Fr−1 = 1.1

Figure 7: Total vorticity fields
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