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2. Methods: The analysis pipeline

3. Preliminary results: Patterns and drivers of resilience losses
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Ecosystems around the world are under increasing pressure from multiple climatic and 
anthropogenic drivers. These can push ecosystems towards new, often unwanted states 
through regime shifts. Regime shifts can occur gradually or abruptly, through incremental 
linear changes, or stochastic fluctuations in drivers but also via increased sensitivity to 
external shocks. They are often predated by frequently unrecognized resilience losses1. 

To improve detection of resilience losses and understanding of drivers, it is therefore 
crucial to account for the multivariate, non-linear nature of the observed ecosystems. Most 
traditional early warning signals (EWS) of resilience losses, however, are based on 
assumptions made for univariate systems. 

Our aim is to get a comprehensive, multivariate understanding of resilience losses in global 
terrestrial ecosystems and their drivers, using vegetation indices from remote sensing data 
with a range of different EWS based on different mechanistic assumptions and machine 
learning models. 
We aim to answer two main questions: 

1. What are the spatial patterns of resilience loss in terrestrial ecosystems as assessed 
with different EWS?

2. What are the relevant climatic and anthropogenic drivers of these resilience losses 
on global and local level?

How do geographic patterns of resilience loss compare between EWS indicators?
• Resilience loss patterns are generally patchy, but show spatial clustering in specific 

regions, such as across Russia and central Asia, the western US, Northeastern Brazil, the 
western Amazon, and western Australia. 

• In large tropical forests, resilience loss patterns show small scale, noisy variations, which is 
in agreement with previous work using different approaches5, 6.

• Different EWS pick up signals in different patterns. The fractal dimension shows similar 
warning signals as the CSD-CSU patterns, with deviations mostly in the high latitudes. 
Flickering, on the other hand, seems to be associated with the boundaries between biomes, 
which might indicate shifting climatic conditions in regions of strong environmental 
gradients.

What role do different drivers play in determining signs of resilience loss?
• For all EWS, static environmental variables are the strongest predictors in the driver 

models showing that sensitivity of different ecosystems to pressures is strongly 
determined by their biogeographic zone, which agrees with previous work7.

• Both negative and positive changes in temperature and precipitation (mean and variance) 
lead to resilience losses. However, for moderate temperature increases (up to ~0.2-
0.3°C/decade), the likelihood of resilience losses decreases. This might be associated with 
a CO2 fertilization effect that is cancelled out at higher increases5.

How do drivers compare with respect to CSD, CSU, flickering and long term memory?
• CSD occurrence is most strongly determined by change of mean monthly precipitation, 

with dry ecosystems showing highest resilience losses. This agrees with patterns found in 
local and global studies previously8, 9.

• CSU patterns, contrarily, are determined more by mean temperature and temperature 
variability.

• Flickering and increasing long-term memory occur more frequently in colder, high latitude 
ecosystems with high temperature variability. This is also where AC1 and variance often 
show conflicting signals6 and can be a sign that there are still complex resilience losses 
ongoing.

Next questions…
• How are resilience losses in the water cycle connected to these patterns in terrestrial 

ecosystems?
• What can spatial EWS tell us about terrestrial resilience losses? 
• What is the role of fast and slow dynamics of climate change drivers for the different EWS 

(e.g. intra-annual vs inter-annual variability)?
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4. Discussion: What do we find?
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Fig. A – D: Maps of different early warning signals detected over the period from 2000 – 2023. A) Total number of EWS showing a 
warning signal. B) Critical Slowing Down (CSD) and Critical Speeding Up (CSU) as defined where AC1 and variance both show a positive or 
negative trend, respectively. C) Flickering, where both skewness and kurtosis show an increasing positive trend, D) Long term memory, as 
defined as pixels where the fractal dimension shows a significant decrease (increasing long term memory) or increase (decreasing long 
term memory). 

Fig. E – F: Model interpretability analyses for the Random Forest driver models. E) Variable importance based 
on permutation assessed for the models for four different EWS, scaled to sum to 1 for each EWS. 
F) Selected partial dependency plots showing the mean predicted value for the range of each predictor, while 
keeping the values of all other predictors constant at their mean value.
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