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Abstract 

Landslides exhibit intermittent gravity-driven downslope movements developing over days to years 

before a possible major collapse, commonly boosted by external events like precipitations and 

earthquakes. The reasons behind these episodic movements and how they relate to the final 

instability remain poorly understood. Here, we develop a novel “endo-exo” theory to quantitatively 

diagnose landslide dynamics, capturing the interplay between exogenous stressors such as rainfall 

and endogenous damage/healing processes. We predict four distinct types of episodic landslide 

dynamics (endogenous/exogenous-subcritical/critical), characterized by power law relaxations with 

different exponents, all related to a single parameter 𝜗. These predictions are tested on the dataset 

of the Preonzo landslide, which exhibited multi-year episodic movements prior to a catastrophic 

collapse. All its episodic activities can be accounted for within this classification with 𝜗 ≈ 0.45 ±

0.1, providing strong support for our parsimonious theory. We find that the final collapse of this 

landslide is clearly preceded over 1-2 months by an increased frequency of medium/large velocities, 

signaling the transition into a catastrophic regime with amplifying positive feedbacks. 

Main text 

Landslides, a widespread form of mass wasting, occur in various Earth surface environments and 

pose significant threats to life and property worldwide1,2. Due to rapid population growth and 

urbanization, human habitats are increasingly exposed to landslide hazards, with the situation 

becoming even more severe under climate change, where extreme rainfall, permafrost thaw, and 

glacier retreat have promoted fatal landslides3. Extensive field observations show that landslides 

commonly exhibit episodic movements characterized by intermittent acceleration-deceleration 

sequences that are boosted by external events like precipitations and earthquakes4–12. Some 

landslides have episodically creeped over hundreds or thousands of years, while others could evolve 

into a major collapse after episodically deforming over days to years13. The reasons behind these 

episodic movements (marked by intermittent bursts of displacement activities followed by sustained 

periods of relaxation dynamics) and how they relate to a possible final catastrophic failure remain 

poorly understood, inhibiting our capability to predict landslide behavior and mitigate the 

associated risks. 

We identify the following fundamental questions: (a) Are episodic landslide movements of an 

exogenous or endogenous origin? (b) What are their underlying mechanisms? (c) How do they 

relate to catastrophic failures? Here, we address these questions by establishing a novel “endo-exo” 

theoretical framework to quantitatively diagnose episodic landslide movements by analyzing the 
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precursory/recovery properties of intermittent velocity peaks. This allows us to classify episodic 

landslide movements into four distinct types as well as to decipher their endogenous/exogenous 

origins and triggering mechanisms. Our theory is very parsimonious with a single adjustable 

parameter accounting for all the four power law regimes of episodic landslide dynamics. We 

provide a thorough demonstration of our theory based on the long-term monitoring dataset of a 

rainfall-induced landslide at Preonzo, Switzerland, which episodically moved over many years prior 

to a major collapse. We observe all the four types of episodic dynamics in the Preonzo landslide 

with their precursory/recovery properties consistent with our theoretical prediction. Finally, we 

provide predictive insights into the transition of this landslide from episodic to catastrophic regimes, 

which is clearly preceded over 1-2 months by a notable decline in the power law exponent of the 

probability distribution of slope velocities. This finding opens up a new avenue for forecasting 

catastrophic landslides. 

Results 

Model of self-excited triggered mass movements. We conceptualize a landslide as a complex 

system consisting of numerous geomaterial masses interacting via cohesive or frictional contacts. 

The displacement activity of the landslide results from a combination of external forces like 

precipitations and earthquakes, and of internal influences where each past moved mass may prompt 

other masses in its network of interactions to move as a result of the redistribution of mechanical 

stress, pore pressure, and possibly other physico-chemical fields. This impact of a mass on other 

masses is not instantaneous, due to the time-dependent nature of the relevant geomechanical 

processes like creep, damage, and friction14. This latency can be described by a memory kernel 

𝜓(𝑡 − 𝜏), giving the probability that the movement of a mass at time 𝜏 leads to the movement at a 

later time 𝑡 by another mass in direct interaction with the first moved mass. This memory kernel 

𝜓(𝑡 − 𝜏) can be seen as a fundamental macroscopic description of how long it takes for a mass to 

be triggered to move following the interaction with an already moved neighboring mass. In other 

words, it is a “bare” propagator, describing the distribution of waiting times between “cause” and 

“action” for a mass to move, which may obey a power law characterizing a long-memory 

process15,16: 

𝜓(𝑡 − 𝜏) ∝ 1/(𝑡 − 𝜏)1+𝜗, with 0 < 𝜗 < 1 and for 𝑡 − 𝜏 > 𝑐 (1) 

where the exponent 𝜗 controls the persistence of memory and 𝑐 is a small characteristic time scale 

regularizing the singularity at 𝑡 − 𝜏 = 0. For instance, one way to implement the regularization is 

to replace 1/(𝑡 − 𝜏)1+𝜗 by 1/(𝑡 − 𝜏 + 𝑐)1+𝜗. Such a regularization is essential to make the 

integral of 𝜓(𝑡) finite and thus ensure a valid theory. Physically, this ensures the finiteness of the 

number of mass movements triggered by a preceding one. The assumption that 𝜓(𝑡) has a power 

law tail is supported by many empirical observations such as Andrade’s law of material creep17 and 

Omori’s law of aftershock activity18. 

Starting from an initial moved mass, i.e., the “mother” mass, which first displaces due to 

either external forces or internal fluctuations, it may trigger the movements of first-generation 

“daughter” masses nearby, which themselves trigger their own daughter masses to move, and so on. 

Such an epidemic process can be captured by a conditional self-excited point process19, which can 

be mapped exactly onto a branching process, such that the average of the displacement rate (i.e., 

velocity) of the mass system is governed by the following self-consistent equation16,20: 

𝑣(𝑡) = 𝑉(𝑡) + 𝑛 ∫ 𝜓(𝑡 − 𝜏)
𝑡

−∞
𝑣(𝜏)𝑑𝜏, (2) 
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where 𝑉(𝑡) is the exogenous source that is not triggered by any epidemic effect in the system and 

𝑛 ≥ 0 is the effective branching ratio defined as the average number of moving daughter masses 

triggered by a mother mass that moved in the past. Equation (2) is the equation for the first-order 

moment (or average) of the velocity, whose underlying dynamics is given by a self-excited point 

process. The branching ratio 𝑛 depends on the network topology of geomaterial masses and the 

spreading behavior of disturbances in the system, therefore reflecting the maturation of the 

landslide, with 𝑛 < 1, 𝑛 ≃ 1, and 𝑛 > 1 corresponding to the subcritical, critical, and supercritical 

regimes, respectively21,22. Here, we mainly focus on the subcritical and critical regimes with 𝑛 ≲ 1 

to ensure stationarity, whereas the transition into the supercritical reigme 𝑛 > 1 related to the 

emergence of a catastrophic failure23,24 will be explored in the Discussion section. 

Classifications of episodic landslide dynamics. According to our model and derivations (see 

Methods), landslide velocities around a peak at time tc can be described by a generalized finite-time 

singularity power law as: 

𝑣(𝑡) ∝ 1/|𝑡 − 𝑡c|𝑝, (3) 

where the exponent 𝑝 depends on the parameter 𝜗 and the regime delineated by a characteristic 

time 𝑡∗ given by23: 

𝑡∗ = 𝑐 (
𝑛Γ(1−𝜗)

|1−𝑛|
)

1/𝜗

∝ |1 − 𝑛|−1/𝜗, (4) 

such that, as 𝑛 → 1 (critical regime), 𝑡∗ → +∞, so that the short-term response prevails (𝑡 − 𝑡c <

𝑡∗); as 𝑛 → 0 (pure noncritical regime), 𝑡∗ → 𝑐 and the long-term response dominates (𝑡 − 𝑡c >

𝑡∗); if 0 < 𝑛 < 1 (subcritical regime), 𝑡∗ has a finite value and the system may manifest a 

coexistence of both short- and long-term responses. This allows us to classify episodic landslide 

movements into four fundamental types based on a combination of the origin of disturbance 

(exogenous/endogenous) and the cascading behavior (subcritical/critical)25: 

• Type I: Exogenous-subcritical, with 𝑝 = 1 + 𝜗 for 𝑡 − 𝑡c > 𝑡∗. Here, the system is not 

“ripe” and the cascading propensity is limited (𝑛 < 1), meaning that the exogenously 

induced displacement activity at time 𝑡c does not cascade beyond the first few 

generations of triggered masses. The post-peak velocity relaxation is thus governed by 

the bare memory kernel. 

• Type II: Exogenous-critical, with 𝑝 = 1 − 𝜗 for 𝑐 < 𝑡 − 𝑡c < 𝑡∗. Here, the system is 

ripe (𝑛 ≃ 1), such that the exogenously induced displacement activity at time 𝑡c 

cascades through the system of interconnected masses, triggering neighboring masses that 

further trigger their own neighboring masses and so on. The post-peak velocity relaxation 

is governed by the “dressed” memory kernel (see Methods). 

• Type III: Endogenous-subcritical, with 𝑝 = 0 for |𝑡 − 𝑡c| > 𝑡∗. The displacement 

activity does not result from an exogenous event but instead from an endogenous forcing. 

The system is not ripe (𝑛 < 1) such that no cascade develops and the (small) peak is 

associated with no apparent precursory/recovery signatures. 

• Type IV: Endogenous-critical, with 𝑝 = 1 − 2𝜗 for 𝑐 < |𝑡 − 𝑡c| < 𝑡∗. The 

displacement activity originates from endogenous growth/interaction within the ripe 

system (𝑛 ≃ 1), where the triggering cascades produce an approximately symmetrical 

power law acceleration-deceleration behavior around the peak. 
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This classification arises from the interplay of the bare long-memory process as embodied in 

equation (1) and the epidemic cascade throughout the system as captured by equation (2). It can be 

seen that the relaxation following an endogenous-critical peak (with a smaller exponent 𝑝 = 1 −

2𝜗) is slower than that following an exogenous-critical peak (with a larger exponent 𝑝 = 1 − 𝜗). 

This longer-lived influence of an endogenous-critical peak results from the precursory process that 

impregnates the system much more than its exogenous counterpart26. 

 

Fig. 1 Preonzo landslide, Switzerland. a Overview of the landslide site with the locations of five 

extensometers E1-E5, the boundary of this instability complex, and the headscarps of historical 

failure events indicated. b Monitoring data of slope displacements by the five extensometers and 

recorded data of rainfall intensity by a pluviometer installed at the slope. 

Application to the Preonzo landslide, Switzerland. We test our theory based on the long-term 

monitoring dataset of a rainfall-induced landslide at Preonzo, Switzerland27, which exhibited 

significant episodic movements over many years prior to a catastrophic failure in 2012. This active 

landslide has experienced multiple failures since the 18th century28 (see the headscarps of historical 

events in Fig. 1a). To closely monitor this instability complex that posed a great threat to the 

industrial and transport infrastructures located directly at the toe of the slope, five high-precision 

extensometers E1-E5 (see Fig. 1a for their locations) were instrumented to measure the opening of 

tension cracks in the headscarp area. From 2008, a pluviometer was installed to monitor the local 

precipitation conditions. Fig. 1b shows the time series of slope displacement measured by the five 

extensometers and of rainfall intensity recorded by the pluviometer between 2008 and 2012 (see the 

inset for the displacement time series from 2002 and Supplementary Fig. 1 for the time series of 

daily/cumulative rainfall amounts). One can see that this landslide exhibited a step-like deformation 

pattern over time as it progressively destabilized, leading up to a catastrophic failure on 15 May 

2012. The displacement curve consists of numerous creep episodes (i.e., repeated cycles of 

accelerating-decelerating creeps) that often show a good coincidence with the occurrence of intense 

rainfall events. 

We compute slope velocities on a daily basis from the displacement time series recorded by 

the five extensometers. All the four types of episodic landslide dynamics, viz., 

exogenous/endogenous-subcritical/critical, can be found in the velocity time series (see Figs. 2 and 

3 for typical examples). We fit the data of normalized velocities to a power law (see Methods for 

the normalized velocity calculation and fitting algorithm). 
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Fig. 2 Four categories of episodic landslide dynamics found in the velocity time series of the 

Preonzo landslide. a Type I, exogenous-subcritical; b Type II, exogenous-critical; c Type III, 

endogenous-subcritical; and d Type IV, endogenous-critical. The red arrow in a marks the timing of 

the local failure of a downslope northern sector of the slope on 9 May 2010. Insets show the post-

peak relaxation of normalized velocity where dashed lines indicate the power law fitting. 

For the Type I exogenous-subcritical peak on 7 May 2010 (Fig. 2a), the velocity relaxation 

beyond ~8 days after the peak is characterized by an exponent of 𝑝 = 1.40 ± 0.07 (exogenous-

subcritical) (Fig. 2a, inset), whereas its short-term response within ~8 days after the peak is 

associated with a much smaller exponent of 𝑝 = 0.47 ± 0.11 (exogenous-critical), as expected 

from the prediction by equation (6) (see Methods). All five extensometers exhibit a similar two-

branch power law relaxation behavior with an exponent of 𝑝 = 0.46 ± 0.10 for the short-term 

response and an exponent of 𝑝 = 1.54 ± 0.06 for the long-term response (Fig. 3a; see also 

Supplementary Fig. S2 for the power law fitting for individual extensometers). Around this peak 

accompanied by mild precipitation (Fig. 3a, left), the slope has experienced a localized failure in its 

northern sector downhill from the tension cracks where the extensometers are installed (see Fig. 1a 

for the headscarp and the Discussion section for the possible triggering mechanisms). 

For the Type II exogenous-critical peak on 9 August 2011 (Fig. 2b), the post-peak velocity 

relaxation obeys a power law with an exponent of 𝑝 = 0.55 ± 0.02 (exogenous-critical) (Fig. 2b, 
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inset). Prior to this peak, a heavy rainstorm has occurred (Fig. 3b, left). All the five extensometers 

have captured this peak followed by a power law relaxation with an overall exponent of 𝑝 =

0.63 ± 0.03 (Fig. 3b; see also Supplementary Fig. S3 for the power law fitting for individual 

extensometers). 

In Fig. 2c, we present a Type III endogenous-subcritical peak preceded by no rainfall event 

(Fig. 3c). This peak is surrounded by an essentially time-independent velocity trajectory with 𝑝 ≈

0 (Fig. 3c), whereas most extensometers do not capture this peak and only show random 

fluctuations (Fig. 3c and Supplementary Fig. 4). 

Lastly, we show a Type IV endogenous-critical peak (Fig. 2d), which occurs after a 

progressively accelerating power law growth of velocity followed by an approximately symmetrical 

power law relaxation, with a common exponent of 𝑝 = 0.24 ± 0.06. It seems that the majority of 

the five extensomers has captured such an approximately symmetrical precursory-recovery 

dynamics with a small power law exponent of 𝑝 = 0.21 ± 0.04 (Fig. 3d), although the timing of 

the peaks recorded by individual extensometers is not fully synchronized (Supplementary Fig. 5). 

One can notice that the time-dependent signatures of endogenous peaks are less apparent compared 

to exogenous ones (as reflected by the notable dispersion of the data in Figs. 2d and 3d). 

Interpreting these results in light of equation (3) above, together with equations (7)-(9) (see 

Methods), the obtained power laws for these different peak types point to the existence of a single 

parameter 𝜗 ≈ 0.45 ± 0.10, providing strong support for our theory. 

We implement a peak detection algorithm to automatically extract slope velocity peaks 

together with their surrounding time series from the 10-year long-term monitoring dataset. We 

qualify a peak in the velocity time series as a local maximum over a 20-day time window which is 

at least 𝑘 = 2.5 times larger than the average velocity over a 2-month time window. The time 

window sizes and threshold value 𝑘 are chosen to give an effective detection of good-quality peaks 

(see Supplementary Fig. 6), but the results do not significantly change by varying these parameters 

(see Supplementary Figs. 7-10 and 13-14). In addition, we request that each peak has at least 10 

days of post-peak data before reaching the next peak. In total, our algorithm detects 104 peaks from 

the entire dataset recorded by five extensometers. We then fit the post-peak velocity data of each 

detected peak to a power law (see Methods) over a time window ranging from 10 to 30 days, with 

the “best” window chosen as the one giving the highest coefficient of determination 𝑅2. We only 

keep the peaks with 𝑅2 > 0.8 to extract unambiguous post-peak response functions, leaving 41 

peaks. In Fig. 4a, we show the histogram of their power law exponents 𝑝, which cluster into two 

distinct groups, one with a median at 𝑝 ≈ 0.59 and the other with a median at 𝑝 ≈ 1.52. This 

result is compatible with our theoretical prediction based on 𝜗 ≈ 0.45 ± 0.10, yielding 𝑝 ≈

1.45 ± 0.10 for Type I peaks and 𝑝 ≈ 0.55 ± 0.10 for Type II peaks. It seems that Type III and 

IV peaks (with 𝑝 ≈ 0 and 0.1 ± 0.20, respectively) are absent in Fig. 4a. This is because they 

usually have small magnitudes and considerably fluctuating post-peak responses (Fig. 2c-d and Fig. 

3c-d), making it difficult for them to pass the criteria of 𝑘 = 2.5 and 𝑅2 > 0.8. We then compute 

the ensemble average of the relaxation behavior for the two exogenous peak types (Fig. 4b), with 

the fitted power laws consistent with the existence of a single parameter 𝜗 ≈ 0.45 ± 0.10. Our 

results in Fig. 4 do not qualitatively change by varying the 𝑘 threshold from 1.5 to 3.5 and the 𝑅2 

threshold from 0.7 to 0.9 as well as the window sizes for peak detection (Supplementary Figs. 12-

14), suggesting that our method and results are robust. 
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Fig. 3 Slope velocity time series measured by the five extensometers E1-E5 as well as rainfall 

intensity data recorded by the pluviometer (left panel) and post-peak velocity relaxation 

(right panel) for different types of peaks. a Type I, exogenous-subcritical; b Type II, exogenous-

critical; c Type III, endogenous-subcritical; and d Type IV, endogenous-critical. The red arrow in a 

marks the timing of the local failure of a northern sector of the slope on 9 May 2010. In c and d 

right, pre-peak data are also indicated (open markers) in addition to post-peak data (filled markers). 
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Fig. 4 Post-peak relaxation properties associated with detected peaks in the velocity time 

series. a Histogram of power law exponents 𝑝 for post-peak velocity relaxation; the double arrows 

indicate the value ranges of 𝑝 = 1 − 𝜗 (Type I peaks) and 𝑝 = 1 + 𝜗 (Type II peaks), with 𝜗 ≈

0.45 ± 0.1. b Ensemble averaged velocity relaxation behavior for Type I and II peaks; error bars 

indicate the standard deviation associated with the ensemble average. 

Discussion 

We have presented a novel endo-exo theoretical framework to quantitatively classify 

episodic landslide movements into four fundamental types of distinct precursory/recovery 

signatures but related by a single common parameter 𝜗. All the four types of landslide dynamics 

have been observed in the Preonzo landslide with 𝜗 ≈ 0.45 ± 0.10, which is different from the 

mean-field solution 𝜗 ≈ 0 for creep ruptures in heterogeneous materials29–31. Such a non-mean-

field response reflects the intrinsic fluctuations and correlations resulting from triggered cascades of 

geomaterial mass motions in the landslide. This 𝜗 value close to 0.5 may be explained by the 

first-passage problem of an underlying random walk32,33, where a daughter mass surrounding a 

mobilized mother mass is only triggered to move when the fluctuating stress first reaches the 

strength level for sliding or fracturing. 

Our findings indicate that, in the Preonzo landslide, numerous velocity peaks induced by 

rainfall are characterized as exogenous-critical. This suggests that the landslide’s behavior in 

reaction to external disturbances is primarily driven by cascading events across multiple generations 

of mass movement triggers. Consequently, the collective response of the mass as a whole is slower 

and more sustained, controlled by a “dressed” memory kernel with an exponent 1 − 𝜗, compared to 

the quicker individual mass responses, which are directed by a “bare” memory kernel with an 

exponent of 1 + 𝜗. This implies that this landslide is operating around a critical state with the 

branching ratio 𝑛 intermittently increasing and receding close to 1, likely due to the competing 

damage and healing processes. This physical picture refines the concept of self-organized criticality 

stating that many crustal phenomena like earthquakes and landslides are evolving in a statistically 

stationary state of marginal stability22,34–37. This paradigm elucidates why certain rainfall events 

trigger episodic landslide movements while others do not, as illustrated in Fig. 3. This behavior 

stems from the system’s dynamic evolution, which, after each peak, settles into a state slightly 
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removed from, but not far from, criticality. Gradually, the system is pushed back towards the 

critical state by a continuous flow of external disturbances, such as rainfall, snowmelt, and diurnal 

temperature/humidity cycles5. In addition, we have documented a unique exogenous-subcritical 

type of episodic landslide dynamics, which is related to the local failure of a downslope sector of 

the slope27 on 9 May 2010. Before showing a rapid exogenous-subcritical relaxation characterized 

by the large exponent 1 + 𝜗, the landslide has actually experienced ~8 days of relatively slower 

exogenous-critical relaxation with the small exponent 1 − 𝜗 (see Figs. 2a and 3a). Substituting this 

characteristic time 𝑡∗ ≈ 8 days together with 𝜗 ≈ 0.45 into equation (4) and the estimate 𝑐 ≈

1 day, we obtain 𝑛 ≈ 0.63. This comparatively low branching ratio 𝑛 is consistent with the fact 

that this local failure-induced shock did not lead to a system-sized collapse since only a few 

generations of failure cascades have developed. In contrast, the high 𝑛 value observed in rainfall-

induced exogenous-critical shocks could stem from rainwater infiltration’s tendency to impact the 

entire slope, resulting in more pronounced spreading behavior. In our dataset, we also observe the 

presence of endogenous-critical landslide dynamics, indicating that cascading mass movements 

play a dominant role in triggering landslides through a kind of self-organized criticality. However, 

they are usually associated with small-magnitude peaks and weak time-dependence (governed by a 

relaxation exponent of 1 − 2𝜗 close to 0), making them sometimes difficult to be discriminated 

from the endogenous-subcritical dynamics driven by random fluctuations. 

Up to now, we have mainly focused on the “endo-exo” regime where the landslide evolution 

is characterized by numerous accelerating-decelerating creep episodes driven by the interplay of 

exogenous perturbation and endogenous maturation. As the mass of the landslide progressively 

weakens, it could transition into the supercritical regime21,22 with 𝑛 > 1, where the number of 

triggering events in the system grows on average exponentially with time23 or even faster24. This 

critical transition is found to be often endogenously driven in different natural and social systems20, 

which rationalizes why many rainfall-induced landslides catastrophically fail in the absence of 

exceptional precipitation events38. If the supercritical regime is dominated by positive feedbacks 

with the slope acceleration behavior �̇�(𝑡) ∝ 𝑣(𝑡)𝑚 characterized by 𝑚 > 1, the system will 

exhibit a finite-time singularity and thus a catastrophic failure39–41. 

We fit the velocity time series of the Preonzo landslide prior to its major collapse on 15 May 

2012 (Fig. 5a) to a finite-time singularity power law (3) with exponent 𝑝 = 1/(𝑚 − 1). We find it 

necessary to consider two power law branches, one with 𝑝 ≈ 1.88 (𝑚 ≈ 1.53) for the early stage 

and the second one with 𝑝 ≈ 0.49 (𝑚 ≈ 3.04) for the final stage (Fig. 5b). This suggests that the 

system is indeed dominated by positive feedbacks which seem to strengthen close to the final 

collapse. Our previous work showed that these late stage large velocities are “dragon-kings”42 — a 

double metaphor for an event of a predominant impact/size like a “king” and a unique origin like a 

“dragon”43. This break in power law scaling thus marks the transition of the system from the self-

organized criticality regime where a catastrophic failure is unpredictable (the so-called “black-

swan” regime)44 to the dragon-king regime where a catastrophic failure becomes predictable43. Such 

a two-branch time-to-failure power law behavior has also been observed in the ground 

deformational response prior to the volcanic eruption at Mount St Helens45. Interestingly, when the 

Preonzo landslide entered the dragon-king regime, it once experienced a temporary deceleration 

during 7-11 May 2012 just before the final collapse. Such a precursory quiescence is consistent with 

the theoretical prediction for the supercritical regime23 with 𝑛 > 1 and 𝜗 > 0. Substituting 𝑡∗ ≈

4 days and 𝜗 ≈ 0.45 into equation (4) which also holds for the supercritical regime23, we obtain 
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𝑛 ≈ 7.5, indicating an intense explosive branching process. Similar precursory quiescence 

phenomena have been observed prior to great earthquakes46 and volcanic eruptions47. 

 
Fig. 5 Evolution of the Preonzo landslide prior to its major collapse on 15 May 2012. a Time 

series of the slope velocity measured by the five extensometers E1-E5 as well as rainfall intensity 

data recorded by the pluviometer. b Variation of normalized velocity prior to the catastrophic 

failure as a function of time to the failure (time flows from right to left), which is fitted to a two-

branch finite-time singularity power law (indicated by the dashed line). c Progressive decline of the 

β-value of the velocity probability distribution, indicating a transition of the landslide from an endo-

exo (subcritical/critical) regime characterized by episodic movements to a dragon-king 

(supercritical) regime ending with a catastrophic failure. 

Drawing parallels between landslides and earthquakes8,11,48–51, we postulate that the 

condition for this subcritical/critical-to-supercritical transition to occur24 is that the system shifts 

from 𝛼 < 𝜇 to 𝛼 ≥ 𝜇, where 𝛼 is the exponent in the productivity law 𝜌(𝐸) ∝ 𝐸𝛼 defining the 

number of daughter masses triggered by a mother mass of energy release 𝐸, while 𝜇 is the 

exponent in the Gutenberg-Richter-type probability density distribution of daily energy release of 

the landslide 𝑓(𝐸(𝑡)) ∝ 𝐸(𝑡)−(1+𝜇). Given 𝐸(𝑡) ∝ 𝑣(𝑡)2, we derive 𝑓(𝑣(𝑡)) ∝ 𝑣(𝑡)−(1+2𝜇) from 

the law of conservation of probability under a change of variable22. Our previous work suggests that 

the probability distribution of the 𝑣(𝑡)’s of the Preonzo landslide follows an inverse gamma 

ba

c
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distribution (with 𝛽 denoting its shape parameter; see Methods) characterized by a power law tail52 

𝑓(𝑣(𝑡)) ∝ 𝑣(𝑡)−(1+𝛽), with therefore 𝛽 = 2𝜇. It is found that 𝛽 progressively drops from 1.92 

to 1.76 (correspondingly, 𝜇 drops from 0.96 to 0.88) over 1-2 months (Fig. 5c). This indicates 

a higher occurrence rate of moderate to large velocities as the slope approaches the critical 

transition from the endo-exo regime (dominated by small velocities) to the dragon-king regime 

(dominated by large velocities) at ~1 week before the final collapse42. Thus, we would expect 𝛼 ≈

0.88, which is comparable to the typical value of 𝛼 ≈ 0.8 for earthquakes53. This correspondence 

holds notwithstanding the fact that landslides happen in near-surface environments under low stress 

conditions, while earthquakes occur in deep subsurface regions subject to much higher stress levels. 

The decrease of 𝛽 (and 𝜇) prior to catastrophic landslides is similar to the observed b-value 

decline prior to great earthquakes54–56, which is possibly due to increased differential stresses on 

rock bridges/asperities accommodating crack propagations57 and/or enhanced differential stresses 

on creeping fault patches promoting slip ruptures58. It also finds a natural explanation in the context 

of cascading triggered events described by self-excited conditional point processes59. This 

observation points to the possibility to predict catastrophic landslides by monitoring the temporal 

evolution of the 𝛽-value. These results demonstrating parallels between landslides and earthquakes 

provide additional supports for the fault mechanics perspective of landslide dynamics and 

failure8,11,48–51. 

Our novel conceptual framework points at the existence of a deep quantitative relationship 

between episodic landslide movements, external triggering events (e.g., rainfall, snowmelt, and 

seismicity), and internal frictional slip, damage, and healing processes within the landmass. The 

results and insights obtained in the current work are of significant value for landslide hazard 

prediction and mitigation, from both the conceptual and operational points of view. Based on the 

well-documented dataset of the Preonzo landslide, we have provided a thorough validation of this 

framework, which can be applied to many other landslides showing similar episodic movements4–12. 

We will report the application of our endo-exo framework to additional landslide cases in 

subsequent publications. The endo-exo framework established in our work has far-reaching 

implications for predicting and mitigating various geohazards, including not only landslides, but 

also earthquakes, rockbursts, volcanic eruptions, and glacier breakoffs, which all exhibit similar 

episodic deformations and sometimes also show transitions into catastrophic failures. 

 

Methods 

Mean field solution of the model of self-excited triggered mass movements. Considering the 

exogenous source 𝑉(𝑡) given by a delta function 𝛿(𝑡) centered at the origin of time, we obtain 

the Green function of equation (2), also called a dressed or renormalized memory kernel 𝛹(𝑡 − 𝜏), 

which is the solution of16,23: 

𝛹(𝑡) = 𝛿(𝑡) + 𝑛 ∫ 𝜓(𝑡 − 𝜏)𝛹(𝜏)
𝑡

−∞
𝑑𝜏, (5) 

such that: 

𝑣(𝑡) = ∫ 𝑉(𝜏)𝛹(𝑡 − 𝜏)
𝑡

−∞
𝑑𝜏, (6) 

which is the solution of equation (2). Here, equation (6) expresses the fact that the present velocity 

𝑣(𝑡) results from all past exogenous sources 𝑉(𝜏) mediated to the present by the dressed memory 
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kernel 𝛹(𝑡 − 𝜏) incorporating all the generations of cascades of influences20. For the case where 

the bare propagator is given by equation (1), the recovery dynamics of the system after a strong 

external event 𝑉(𝜏) ∝ 𝛿(𝜏 − 𝑡c) is fully controlled by the dressed memory kernel16, such that: 

𝑣(𝑡) = 𝛹(𝑡) ∝ {
1/(𝑡 − 𝑡c)1−𝜗, for 𝑐 < 𝑡 − 𝑡c < 𝑡∗,

1/(𝑡 − 𝑡c)1+𝜗, for 𝑡 − 𝑡c > 𝑡∗,        
 (7) 

where 𝑡c is the critical time chosen as the time of the peak and 𝑡∗ is the characteristic time given 

by equation (4). 

In the absence of strong external events, a peak in landslide velocity can also spontaneously 

occur due to the interplay of a continuous stochastic flow of small external perturbations and the 

amplifying impact of the epidemic cascade of endogenous interactions. The average velocity 

trajectory before and after the peak, conditioned on the existence of a peak, is given 

by ⟨𝑣(𝑡)|𝑣(𝑡c)⟩ ∝ Cov(𝑣(𝑡), 𝑣(𝑡c)), so the precursory and recovery dynamics associated with the 

peak are governed by16: 

𝑣(𝑡) ∝ ∫ 𝛹(𝑡 − 𝑡c − 𝜏)
𝑡−𝑡c

−∞
𝛹(−𝜏)𝑑𝜏 ∝ 1/|𝑡 − 𝑡c|1−2𝜗, for 𝑐 < |𝑡 − 𝑡c| < 𝑡∗, (8) 

or equivalently for 𝑛 → 1 (critical regime). If 𝑛 < 1 (subcritical regime), the system response is 

essentially a noise process largely driven by random fluctuations, described by25: 

𝑣(𝑡) ∝ 1/|𝑡 − 𝑡c|0, for |𝑡 − 𝑡c| > 𝑡∗. (9) 

Calculation of normalized velocities around a peak. We compute normalized slope velocities 

�̃�(𝑡) around a peak based on the following equation: 

�̃�(𝑡) =  (𝑣(𝑡) − 𝑣0)/(𝑣(𝑡c) − 𝑣0), (10) 

where the slope velocity 𝑣(𝑡) reaches a peak value of 𝑣(𝑡c) at time 𝑡 = 𝑡c and 𝑣0 is the 

residual velocity when the landslide system has fully recovered from external perturbations. 

However, the determination of this residual velocity for a rainfall-induced landslide (like the 

Preonzo landslide) is subject to significant uncertainties, because the landslide has very rare 

opportunities to completely recover from one rainfall event before the next one occurs. In this work, 

we estimate the residual velocity by first detecting troughs in the velocity time series. We qualify a 

trough in the velocity time series as a local minimum over a 20-day time window which is at least 

𝑘 = 2.5 times smaller than the 2-month average velocity. The time window sizes and the threshold 

value 𝑘 are chosen to give an effective and reasonable detection of peaks and troughs from the 

data (see Supplementary Fig. 2), but the results do not significantly change by varying these 

parameters (see Supplementary Figs. 7-10 and 13). We then define the residual velocity associated 

with a given peak as the minimum of the two nearest troughs (with one before the peak and one 

after the peak). Note that this residual velocity tends to vary over time reflecting the nonstationary 

characteristic of the landslide. Supplementary Fig. 11 shows the probability density function of 

calculated residual velocities (associated with the identified peaks in Supplementary Fig. 6), which 

have a mean of 0.008 mm/day. We have also tested other possible approaches of determining the 

residual velocity, e.g., based on the average of the 10 nearest troughs around a peak or based on the 

minimum/average of the troughs located between the former peak and the latter peak. No 

significant changes in the results are found. 

Power law calibration of velocity time series around a peak. We fit the time series of normalized 

velocities �̃�(𝑡) around a peak to the finite-time singularity power law function: 

�̃�(𝑡) =  𝐴 |𝑡 − 𝑡c|𝑝⁄ , (11) 
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where 𝑡c is the critical time chosen as the time of the peak, 𝐴 is a constant, and 𝑝 is the power 

law exponent. To estimate 𝐴 and 𝑝, we use the method of least squares to minimize the sum of 

squared residuals 

𝑠 =  ∑ 𝑟(𝑡𝑖)
2

𝑡𝑖
, (12) 

with each residual calculated as 

𝑟(𝑡𝑖) =  log�̃�(𝑡𝑖) − log𝐴 + 𝑝log|𝑡𝑖 − 𝑡c|. (13) 

We then set the partial derivatives 𝜕𝑠/𝜕(log𝐴) and 𝜕𝑠/𝜕𝑝 to be both zero, leading to solve a 

linear system of two equations with the two unknowns 𝐴 and 𝑝. 

Inverse gamma distribution. The probability density function of the three-parameter inverse 

gamma distribution is written as42,60: 

𝑓(𝑣) =
𝛼𝛽

Γ(𝛽)
(

1

𝑣−𝛾
)

𝛽+1

exp (−
𝛼

𝑣−𝛾
), (14) 

where 𝑣 is the slope velocity, 𝛼 is a scale parameter, 𝛽 is a shape parameter equal to the 

exponent of the asymptotic power law tail for large 𝑣’s (according to the mathematical convention 

in the theory of Lévy stable laws22), 𝛾 is a threshold velocity, and Γ(∙) is the gamma function. 

The parameters need to meet the conditions of 𝛼 > 0, 𝛽 > 0, and 𝛾 < 𝑣. The parameters 𝛼, 𝛽, 

and 𝛾 can be determined based on the profile maximum likelihood estimation method39. The 

inverse gamma distribution has an essential singularity at 𝑣 = 𝛾 and the corresponding rollover for 

𝑣’s around the mode 𝛼/(𝛽 + 1) + 𝛾, and a power law decay with a tail exponent 𝛽 for medium 

and large 𝑣 values, so that the tail of the inverse gamma tends to converge to the power law52 

𝑓(𝑣) ≈
𝛼𝛽

Γ(𝛽)
𝑣−𝛽−1, for 𝑣 ≫ 𝛼 + 𝛾. (15) 

Data availability 

The slope displacement monitoring data of the Preonzo landslide are publicly available at the ETH 

Zurich Research Collection (https://doi.org/10.3929/ethz-b-000600495). 
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Supplementary Fig. 1 Monitoring data of the Preonzo landslide, Switzerland. Time series of 

slope displacements measured by five extensometers presented together with the data of a daily 

rainfall and b cumulative rainfall recorded by a pluviometer installed at the Preonzo slope.  
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Supplementary Fig. 2 Post-peak relaxation of Type I exogenous-subcritical peaks. Variation of 

normalized velocity as a function of post-peak time for the five extensometers E1-E5.  
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Supplementary Fig. 3 Post-peak relaxation of Type II exogenous-critical peaks. Variation of 

normalized velocity as a function of post-peak time for the five extensometers E1-E5.  
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Supplementary Fig. 4 Pre-peak (open symbols) acceleration and post-peak (colored symbols) 

relaxation of Type III exogenous-subcritical peaks. Variation of normalized velocity as a 

function of pre/post-peak time for the five extensometers E1-E5.  
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Supplementary Fig. 5 Pre-peak (open symbols) acceleration and post-peak (colored symbols) 

relaxation of Type IV exogenous-critical peaks. Variation of normalized velocity as a function of 

pre/post-peak time for the five extensometers E1-E5.  
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Supplementary Fig. 6 Time series of daily slope velocities recorded by the five extensometers 

E1-E5 (from top to bottom) instrumented at the Preonzo landslide, Switzerland. Peaks and 

troughs are marked by circles and squares, respectively. Each peak (respectively trough) is qualified 

as a local maximum (respectively minimum) over a 20-day time window which is at least k = 2.5 

times larger (respectively smaller) than the average velocity over a 2-month time window.  
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Supplementary Fig. 7 Time series of daily slope velocities recorded by the five extensometers 

E1-E5 (from top to bottom) instrumented at the Preonzo landslide, Switzerland. Peaks and 

troughs are marked by circles and squares, respectively. Each peak (respectively trough) is qualified 

as a local maximum (respectively minimum) over a 20-day time window which is at least k = 1.5 

times larger (respectively smaller) than the average velocity over a 2-month time window.  
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Supplementary Fig. 8 Time series of daily slope velocities recorded by the five extensometers 

E1-E5 (from top to bottom) instrumented at the Preonzo landslide, Switzerland. Peaks and 

troughs are marked by circles and squares, respectively. Each peak (respectively trough) is qualified 

as a local maximum (respectively minimum) over a 20-day time window which is at least k = 3.5 

times larger (respectively smaller) than the average velocity over a 2-month time window.  



 

10 

 

 

Supplementary Fig. 9 Time series of daily slope velocities recorded by the five extensometers 

E1-E5 (from top to bottom) instrumented at the Preonzo landslide, Switzerland. Peaks and 

troughs are marked by circles and squares, respectively. Each peak (respectively trough) is qualified 

as a local maximum (respectively minimum) over a 40-day time window which is at least k = 2.5 

times larger (respectively smaller) than the average velocity over a 4-month time window.  
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Supplementary Fig. 10 Time series of daily slope velocities recorded by the five extensometers 

E1-E5 (from top to bottom) instrumented at the Preonzo landslide, Switzerland. Peaks and 

troughs are marked by circles and squares, respectively. Each peak (respectively trough) is qualified 

as a local maximum (respectively minimum) over a 10-day time window which is at least k = 2.5 

times larger (respectively smaller) than the average velocity over a 1-month time window.  
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Supplementary Fig. 11 Histogram of slope residual velocities. Data are plotted in a linear scale 

(left) and a logarithmic scale (right).  



 

13 

 

 

 

Supplementary Fig. 12 Post-peak relaxation properties associated with detected peaks in the 

velocity time series. Left: histogram of the power law exponents p for post-peak velocity 

relaxation. Right: ensemble averaged relaxation of Type I (exogenous-subcritical) and Type II 

(exogenous-critical) peaks. Here, a peak is qualified as a local maximum over a 20-day time 

window which is at least k = 2.5 times larger than the average velocity over a 2-month time 

window, while the coefficient of determination for the fitting should meet a R2 > 0.9 or b R2 > 0.7.  
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Supplementary Fig. 13 Post-peak relaxation properties associated with detected peaks in the 

velocity time series. Left: histogram of the power law exponents p for post-peak velocity 

relaxation. Right: ensemble averaged relaxation of Type I (exogenous-subcritical) and Type II 

(exogenous-critical) peaks. Here, a peak is qualified as a local maximum over a 20-day time 

window which is at least a k = 1.5 or b k = 3.5 times larger than the average velocity over a 2-

month time window, while the coefficient of determination for the fitting should meet R2 > 0.8.  
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Supplementary Fig. 14 Post-peak relaxation properties associated with detected peaks in the 

velocity time series. Left: histogram of the power law exponents p for post-peak velocity 

relaxation. Right: ensemble averaged relaxation of Type I (exogenous-subcritical) and Type II 

(exogenous-critical) peaks. Here, a peak is qualified as a local maximum over a (a) 40-day or (b) 

10-day time window which is at least k = 2.5 times larger than the average velocity over a a 4-

month or b 1-month time window, while the coefficient of determination for the fitting should meet 

R2 > 0.8. 


