On the Crucial Role of Wind-Wave-Tunnel Studies to Reveal the Mechanisms of Air-Sea Gas Exchange

Bernd Jähne^{1,2}

¹Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) and ²Institut für Umweltphysik, Heidelberg University Bernd.Jaehne@iwr.uni-heidelberg.de

Session OS1.7 Impacts of Air-Sea Fluxes on Biogeochemistry and Climate: Challenges and Opportunities from 20 years of Surface Ocean Lower Atmosphere Study (SOLAS)

ITS2.7/AS2.7, EGU General Assembly, 15 April 2024

Major challenge since half a century

Large uncertainty in gas transfer velocity and the parameters controlling it

- Wind is major driving factor, but
- Energy input split into generating shear current and wind-wave field
- $\bullet \rightsquigarrow$ Turbulence generation by shear flow and breaking waves
- Bubbles submerged by breaking waves generate additional exchange surface
- All these processes are influenced by surfactants at water surface

Field experiments

Recent collection of field data

ILLR

Interdisciplinary Center

for Scientific Computing

Viscous, thermal, and mass boundary layers on both sides

Bernd Jähne (IWR & IUP, Heidelberg University)

Interdisciplinary Center

ntific Computing

Basic scales for exchange across air-water interface I

• Speed of exchange: transfer velocity k [cm/h]

$$k = \frac{j}{\Delta C} = \frac{j}{c_{ws} - c_{wr}} \quad (2 - 70 \,\mathrm{cm/h}) \tag{1}$$

• Vertical spatial scale: mass boundary layer thickness z_{\star} [μ m]

$$j = -D \left. \frac{\partial c}{\partial z} \right|_{0} = -D \frac{\Delta c}{z_{\star}} \quad \rightsquigarrow \quad z_{\star} = \frac{D}{k} \quad (350 - 10 \,\mu\text{m}) \tag{2}$$

Basic scales for exchange across air-water interface II

• Temporal scale time constant t_{\star} [s]

$$t_{\star} = \frac{z_{\star}}{k} = \frac{D}{k^2} \quad (60 - 0.06 \, s) \tag{3}$$

• Horizontal spatial scale time constant x_{\star} [m] (footprint required)

$$x_{\star} = \Delta u t_{\star} \quad (100 - 1 \,\mathrm{cm}) \tag{4}$$

Relevant is not advection but velocity difference Δu caused by the shear current within the viscous boundary layer

Active thermography: Spatiotemporal response at 2.0 m/s wind speed

 $\begin{array}{ccc} 0.5\,s & 1.0\,s & 1.5\,s \\ \text{Time after switching on heat flux with CO_2 laser in marked areas} \\ & \text{image sector $25\,cm} \times 25\,cm \end{array}$

Bernd Jähne (IWR & IUP, Heidelberg University)

Active thermography: Spatiotemporal response at 2.0 m/s wind speed

 $\begin{array}{ccc} 2.0\,s & 2.5\,s & 3.0\,s \\ \mbox{Time after switching on heat flux with CO_2 laser in marked areas} \\ \mbox{image sector $25\,cm$} \times 25\,cm \end{array}$

Bernd Jähne (IWR & IUP, Heidelberg University)

IR

Same at medium wind speed (7.0 m/s)

 $\begin{array}{ccc} 0.5\,\text{s} & 1.0\,\text{s} & 1.5\,\text{s} \\ \text{Time after switching on heat flux with CO_2 laser in marked areas} \\ & \text{image sector $25\,\text{cm}$} \times 25\,\text{cm} \end{array}$

Bernd Jähne (IWR & IUP, Heidelberg University)

ILLR

Imaging of concentration fields within mass boundary layer

No wind, convection induced (left oxygen, right heat) (from Kunz, Bachelor thesis, 2011)

Imaging of concentration fields within mass boundary layer

Imaging of concentration fields within mass boundary layer

Large Heidelberg Annular Air-Sea Interaction Facility (Aeolotron)

Outlook with Preliminary Results At Low and Very High Wind Speeds

- Insoluble hexadecanol monolayer and 5 ppm Triton X-100 completely suppress wind-wave generation up to 8 m/s wind speed
- In contrast, 2.4 g/L hexanol reducing surface tension to 43 dyn/cm does not suppress wind-waves at all
- No visible difference in spatio-temporal structures of concentration fields with monolayer of hexanol and 5 ppm Triton X-100

Hexadecanol Monolayer at \approx 4 m/s Wind Speed

5 ppm Triton X-100 at \approx 4 m/s Wind Speed

Switching Wind Off

Bernd Jähne (IWR & IUP, Heidelberg University)

IUR

Air-Sea Gas Exchange Lab Studies

Air-Sea Gas Exchange Lab Studies

Very High Wind Speeds: New Regime beyond 35 m/s

Very High Wind Speeds DMS and CO₂

Bernd Jähne (IWR & IUP, Heidelberg University)

IUR

Interdisciplingry Center cientific Computing

Air-Sea Gas Exchange Lab Studies

Conclusions

- Novel imaging techniques directly reveal mechanisms of air-sea gas transfer
- Large annular facility provides sufficiently realistic oceanic conditions
- A physically-based model will emerge from the novel approach within two years including the effects of sea state, unsteady winds and surfactants

Extra Material

Bernd Jähne (IWR & IUP, Heidelberg University)

Air-Sea Gas Exchange Lab Studies

Modeling Bubble-induced Gas Transfer I

• Bubbles provide additional closed exchange surface

$$k_{\rm tot} = k_s + k_c \tag{5}$$

• Limiting case of low solubility: like open surface

$$k_{c,\text{low}\alpha} = k_{c,600} \left(\frac{600}{Sc}\right)^{n_b} \tag{6}$$

ullet Limiting case of high solubility: bubble carries gas with volume flux Q_b

$$k_{c,\text{high}\alpha} = \frac{1}{\alpha} \frac{Q_b}{A_s} = \frac{k_r}{\alpha} \tag{7}$$

Transfer velocity $\propto k_r = Q_b/A_s$ and to $1/\alpha$; does not depend on Schmidt number

isciplinary Center

Modeling Bubble-induced Gas Transfer II

• Exponential transition between the two limiting cases

$$k_{c} = \frac{k_{r}}{\alpha} \left[1 - \exp\left(-\frac{\alpha}{\alpha_{t}}\right) \right] \quad \text{with} \quad \alpha_{t} = \frac{k_{r}}{k_{c,600}} \left(\frac{Sc}{600}\right)^{n_{b}}$$
(8)

• Limiting k_{tot} for clean water ($n = n_b = 0.5$)

$$k_{\text{tot}} = \begin{cases} \left(k_{s,600} + k_{s,600}\right) \left(\frac{600}{Sc}\right)^{0.5} & \alpha \ll \alpha_t \\ \\ k_{s,600} \left(\frac{600}{Sc}\right)^{0.5} + \frac{k_r}{\alpha} & \alpha \gg \alpha_t \end{cases}$$

Just two parameters for bubble-induced gas exchange: $k_{c,600}$ and k_r

(9)

Verification of Model with Multi-Tracer Measurements

from two high wind speed facilities: Kyoto and SUSTAIN (Krall et al., 2019)

Verification of Model with Multi-Tracer Measurements

from two high wind speed facilities: Kyoto and SUSTAIN (Krall et al., 2019)

