
• Fracture geometries and properties. Identify faults and fractures in key 
seal rocks. Investigate their variability in orientations, dimensions, density, 
width, aperture and �ll for di�erent rock types and structural settings.

• Fracture dilation and reactivation (geomechanics). Quantify stress 
orientations and magnitudes. Examine caprock/seal pressures required to 
open fracture and promote hydrogen (H2) migration.

• Fracture modelling. Develop Discrete Fracture Network (DFN) model to 
investigate possible �uid �ow pathways through fracture networks. 
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Figure 4: Analagous surface outcrop examples of sub-vertical joints with joint spacing and continuity controlled by bedding 
(left) and fault architecture (right). Bedding (green), faults and associated fractures (red), and background fracturing (blue) 
are highlighted. Complex architecture with intense damage zone, similarities to Figure 1.
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Figure 2 below: Cores from 
prosepctive reservoir (top) 
and seal (bottom) units. 
Note difference in fracture 
properties, abundance and 
architecture.

Figure 3: Generalised cross-section of a complex anticline 
hydrocarbon field within Taranaki, New Zealand depicting 
potential hydrogen storage. Preliminary analysis shows 
lithology is an important control on fracture density. Higher 
fracture densities are expected in the ‘Fault’, ‘Crestal’ and 
‘Flank’ than in the ‘Distal’ and ‘Undeformed’ locations.

Figure 1: Features identified on 
resitivity image (left), faults (red), 
conductive (black) and resistive 
(brown) fractures and bedding 
(green). Early analysis for CaCO3 
as a control on fracture and fault 
density (right).

Figure 5: Present day stress map of Taranaki region, New Zealand [1].

• Orientate fracture and fault planes within the in-situ 
stress �eld to calculate applied normal force.

• Recreate in-situ normal stress for di�erent fracture 
properties under constant normal load direct shear 
tests. Calculate friction angle.

• Determine which fracture and fault populations are 
critically stressed and likely to reactivate during H2 
injection/withdrawal scenarios (Figure 6).

• Create DFN vmodels that approximate fracture & fault 
distributions in the seal, showing critically stressed 
fracture populations as potentially enhanced �uid 
�ow pathways.

• Use fracture models to assist reservoir scale 
simulations (Figure 7).

Figure 6: Diagrammatic representation of the critical stress hypothesis 
where failure of fractures can be predicted given fracture properties and 
orientation within the principal in-situ stress feild [2].

Figure 7: Leapfrog model showing stratigraphy, structure and location of 
wells in the Ahuroa field, Taranaki, New Zealand. The model is used in 
conjunction with a DuMux reservoir model to simulate hydrogen injection 
and withdrawal cycles, please see Parker et al. EGU presentation (2024).
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