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BACKGROUND
q Ensemble Streamflow Predictions (ESPs) are a 

popular choice for producing probabilistic 
streamflow forecasts operationally.

q These forecasts do provide economic value for 
hydrological decision-making.

STUDY DOMAIN

Fig 1: 8 USGS basins colored by the ratio of the April 1 SWE to 
water–year-to-date cumulative precipitation.

FORECAST SKILL AND VALUE DIAGRAM – LAKE FORK

METHODOLOGY
3b. MODELS APPLIED IN ESP

3c. POTENTIAL ECONOMIC VALUE (PEV) – MEASURE OF FINANCIAL BENEFIT FROM EARLY ACTION MITIGATION OF AN EXTREME EVENT

RELATIONSHIP BETWEEN SKILL AND VALUE
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Fig 5: ESPs showing April-July streamflow volume from different 
models in WY2006-2020 at Lake Fork (USGS 09124500).

q We compare Normalized RMSE (%) from 
three models across the years below the 
25th percentile. Lower NRMSE values 
indicate better model performance. 

q Our findings suggest that taking action to 
mitigate losses when streamflow volume falls 
below the 25th percentile yields significant 
value, particularly when using CBRFC and 
LSTM forecasts, which have reasonable skill.

q LSTM and CBRFC offer the greatest benefit across most of 
the basins, considering their high forecast skill. The WRFH 
showed limited benefit primarily due to a lack of calibration. 

q The comparison of forecast skill (NRMSE) and forecast value 
(Area under PEVmax) reveals a non-linear relationship, 
indicating some financial benefit can be obtained using a 
forecast having skill up to 80% compared to climatology. In 
general, LSTM and WRFH show consistently low skill and 
value due to the absence of post-processing, a practice 
commonly employed by CBRFC. 

q The relationship between forecast skill and value aids in hydrological decision-
making by providing a range of possible financial benefits that can be obtained 
using different models in distinct hydro-climatic settings.

q We plan to broaden the analysis by expanding the ESP forecasts to encompass 
a larger number of basins using a consistent test bed. This will involve uniformity 
in meteorological forcings and conducting appropriate model calibration. 
Furthermore, we intend to extend this analysis to encompass a variety of hydro-
climatic regimes, thereby offering deeper insights into the relationship between 
forecast skill and value.

Fig 7: Maximum PEV 
quantified using three models 
for 8 USGS basins in the 
Upper Colorado River basin. A 
binary decision for taking 
action when AMJJ volume falls 
below the 25th percentile of 
observations is considered. 
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Hypothesis about forecasts

3a. ENSEMBLE STREAMFLOW PREDICTIONS
q In ESP, historical weather observations are used as inputs 

to process-based or deep-learning models.
q The result is a probabilistic forecast ranging from 30 up to 

180 days from the forecast date that uses spread in the 
historical data as an analogue for the uncertainty in 
climate after the forecast date (Day, 1985).

q Probabilistic Seasonal Streamflow forecasts are produced 
using different modeling setups except ”Operational”, which is 
obtained from the Colorado Basin River Forecast Center.
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102 WRFH 0.19

34 LSTM 0.38

14 CBRFC 0.77

Fig 6: Maximum PEV quantified using three different models.  
A binary decision for taking action when AMJJ volume falls 
below the 25th percentile of observations is considered.
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Fig 2: Illustration of an ESP forecast issued on April 1. The black 
line indicates a ‘true’ forecast (i.e., observation). Using the initial 
conditions (shown in blue) and meteorological forcings from the 
past ~20 to 30 years, ensemble streamflow forecasts are generated 
(shown in grey). Data based on USGS 13313000 – WY2011. 
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Fig 3: Schematic of model workflows applied in ESP framework.
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Area under PEVmax represents 
the magnitude of the financial 
benefit of a forecast system 
considering multiple users
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Fig 4: Flowchart showing the workflow to quantify the Potential Economic Value using the probabilistic forecasts. The PEV uses a threshold approach and relies on 
contingency table parameters (H and F), climatological frequency (s), and cost-loss ratio (⍺). PEVmax is an upper limit of financial benefit, implying a user has perfect 
foresight or a perfectly reliable forecast (Richardson, 2000).
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Figure adapted from Laugesen et al., 2023
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2x2 Contingency Table for all 
critical probability thresholds 

C = Cost of mitigating action
L = Loss due to event

Expected expense of a user of forecast system

Expected expense with using climatological 
information

Expected expense given a perfect forecast

Potential Economic Value (PEV)

Substituting Eq 1-3

Perfect forecast system à PEV = 1
Equal to climatology       à PEV = 0
Worse than climatology  à PEV < 0
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⍺ = C/L (Cost-loss ratio) & s = climatological frequency
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