
1.  Introduction
The heavy devastations caused by tropical cyclones (TCs) on life and property make the improvement of TC 
forecasts crucial for public safety. However, the accurate prediction of TC track and intensity still face great 
challenges. There are numerous uncertainty sources in TC forecasts, such as the initial error caused by the inac-
curacy of input analysis data, the model error either from the structural bias in the numerical scheme and inter-
polation, or from the parameterization errors due to deficiencies in various physical parameterization schemes. In 
order to reduce physical parameterization errors and improve the representation of TC conditions, much efforts 
have been made in the development and assessment of physical parameterization schemes, especially for those 
general physics such as cumulus convection, microphysics and boundary layer processes. For example, a new 
convection trigger in the Kain-Fritsch (KF) cumulus scheme was proposed for improving TC forecasts with weak 
synoptic forcing (Ma & Tan, 2009). Shi and Wang  (2022) showed that the multiscale KF scheme performed 
better than those conventional cumulus schemes in TC precipitation forecasts owing to the scale-awareness and 
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parameterized cloud–radiation feedback. In the evaluation of microphysics schemes, the Thompson aerosol-aware 
scheme was denoted of superiority in hurricane precipitation forecasts and was further improved based on the 
polarimetric radar observations (Brown et al., 2016, 2017). Several boundary layer parameterization schemes 
have been improved for diffusion and mixing within TC boundary layer based either on the aircraft observations 
(Gopalakrishnan et al., 2021; Zhang et al., 2015) or the large eddy simulations (Chen, 2022; Chen et al., 2022; Li 
& Pu, 2021). Besides the deficiency within single scheme, the interaction of different physical parameterization 
schemes also contributes significantly to the forecast error. With a number of schemes for describing each physi-
cal processes in the numerical model, how to select a suitable combination of physical parameterization schemes 
for TC forecasts becomes an important question.

There are many works on the selection of scheme combinations for TC track and intensity forecasts, mostly 
focusing on limited number of physical parameterization schemes (e.g., Islam et al., 2015; Osuri et al., 2012; Raju 
et al., 2011; Srinivas et al., 2013). Di et al. (2019) employed a systematic combinatorial optimization method to 
efficiently cover all available schemes in the model, and determined the well-performed combinations for TC 
track, central sea level pressure, and 10 m maximum surface wind, respectively. However, the evaluations in 
the above studies were all carried out in the deterministic forecast, that is, the single-run forecast with a specific 
initial field and a specific model set, while changing the physical parameterization schemes to be tested. And 
the forecast performance was verified by the deterministic forecast error, that is, the difference between a single 
forecast value and the corresponding observation data.

It is well established that even very small perturbations in the initial conditions or the prediction model can 
develop into a large range of possibilities after a few days of integration (Lorenz, 1963). So the nonlinear interac-
tion of all kinds of errors in the forecast will eventually lead to the forecast variables fluctuating in a distribution 
rather than being a single value. Also the forecasts with different physical parameterization schemes may produce 
distinct forecast distributions. The deterministic forecast error is only a sample of all possibilities, thus has inher-
ent limitations to represent the overall performance of the combination of physical parameterization schemes. In 
order to verify the overall performance of various scheme combinations, the evaluation should be carried out in 
a realistic uncertainty context, which accounts for the lost forecast possibilities.

A practical way to reflect the forecast uncertainty is to employ ensemble perturbations, which will develop into 
a forecast probability distribution over time. Considering it is impossible to account for all kinds of uncertainty 
in TC forecasts, this study mainly focuses on the model uncertainty, that is, the nonlinear interactions of model 
errors, thus utilizes a stochastic kinetic-energy backscatter (SKEB) scheme to create the ensembles related to the 
model errors. Originating from the concept that the model error can be manifested in the loss of subgrid-scale 
energy, SKEB accounts for the uncertainty of the energy cascade from the subgrid-scale processes to the resolved 
flow (Shutts,  2005). The SKEB generates stochastic, spatial and temporal correlated perturbations, and adds 
the perturbations to the tendency equations of the horizontal wind and the potential temperature at every time 
step. Through this process, a sprinkle of energy is injected back to the resolved flow as the wind and temperature 
forcing. Thus the SKEB perturbations address the model errors due to the unrepresented subgrid-scale processes 
in a very natural way. The SKEB was successfully implemented in the advanced Weather Research and Forecast 
(WRF) model by Berner et al.  (2011), and performed useful in improving the probabilistic weather forecasts 
in the mid-latitudes. Besides, Berner et al. (2011) showed that the ensemble forecast combining multi-physics 
schemes with SKEB perturbations performed the best, indicating that the model errors can be more sufficiently 
represented through the addition of SKEB perturbations to the multi-physics ensembles. SKEB has been widely 
used for TC ensemble forecast studies, and shows improvements in the ensemble dispersion no matter for TC 
genesis forecasts (Thatcher & Pu, 2014), or for TC track and intensity forecasts (Judt et al., 2016; Li et al., 2019; 
Melhauser et al., 2017). Considering the physics as well as the good application of SKEB, it is suitable to add 
SKEB perturbations to various combinations of physical parameterization schemes for evaluating their forecast 
performances in the model uncertainty context.

The average of the forecast distribution, or the ensemble mean, generally provides a smaller error than most 
individual members comprising the ensemble (Murphy, 1988; Tracton & Kalnay, 1993). In addition, the width of 
the forecast distribution, or the ensemble spread is also an important metric of the ensemble that can reflect the 
uncertainty in the forecast (Whitaker & Louche, 1998). If the ensemble spread is smaller than the ensemble mean 
error, the ensemble is seen as under-dispersive and the model is over-confident, and vice versa. For TC ensemble 
forecast verifications, the forecast error is mostly measured by the ensemble mean error, while the reliability of 
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the probability distribution is separately evaluated by the spread–error rela-
tionship (e.g., Aemisegger, 2009). However, substituting the ensemble mean 
error for the deterministic forecast error will still lose the forecast possibil-
ities, because the ensemble mean is also a deterministic forecast. And an 
objective selection for physical parameterization schemes is hard to achieve 
since the ensemble mean error and the spread–error relationship may exhibit 
different performances among the ensemble forecasts with various physical 
parameterization schemes. Therefore, the performance of the ensemble fore-
cast will be better measured by a metric including the characteristics of the 
ensemble mean error and the ensemble spread. In other words, the evalua-
tions of scheme combinations in the uncertainty context should be based on 
the overall quality of the forecast distributions.

In previous studies, the well-performed scheme combination was either 
selected for the track forecast and the intensity forecast separately (Di 

et  al.,  2019), or selected for all variables depending on the subjective judgment (Osuri et  al.,  2012; Raju 
et al., 2011; Srinivas et al., 2013). With accurate intensity but large-biased track, the TC forecast is hard to trust. 
With accurate track but large-biased intensity, the predicted vortex structure may be false. Thus it is expected to 
obtain a scheme combination performing good in both track and intensity forecasts.

This study proposes an uncertainty-informed framework of evaluating and selecting the combinations of physical 
parameterization schemes for TC track and intensity forecasts. More specifically, this study attempts to explore 
the following questions: (a) What is the difference between the performance of the scheme combination in the 
uncertainty context and that in the deterministic context? (b) How to evaluate the forecast performance of the 
scheme combination in the context of model uncertainty? (c) How to further quantify the multivariate forecast 
performance of the scheme combination for TC forecasts? To address these questions, a few combinations of 
physical parameterization schemes are first selected from a number of schemes, then the deterministic forecasts 
and the SKEB-perturbed ensemble forecasts with these combinations are carried out. Instead of the determin-
istic forecast error and the ensemble mean error, the ensemble Continuous Ranked Probability Score (eCRPS, 
Gneiting & Raftery, 2007) which has the ability of measuring the overall quality of the forecast distribution is 
employed for the evaluations of ensemble forecasts. Furthermore, the forecast distributions of TC track and 
intensity forecasts are combined and evaluated through a multivariate extension of eCRPS, thus obtaining the 
well-performed combination from the evaluated schemes in the context of model uncertainty.

The paper proceeds as follows. Section 2 presents an overview of TC cases and model set-up, along with the 
experimental design. Section 3 shows the results of the deterministic forecasts and the ensemble forecasts with 
various physical parameterization combinations. Section 4 displays the performances of various combinations 
quantified by eCRPS in track ensemble forecasts and intensity ensemble forecasts, respectively. Section 5 exhib-
its the multivariate performance of the combinations. Section 6 conducts a further validation of the evaluation 
results. The conclusion and discussion are given in Section 7.

2.  Methodology
2.1.  TC Cases and Model Set-Up

A total of six TC cases during 2018 over the western North Pacific (WNP) are considered in the evaluation of 
physical schemes, with intensity and simulation period information listed by Table 1. The TCs were mainly over 
the ocean and all experienced intensification and weakening during the simulation period, with the lifetime maxi-
mum intensity of at least category 4 based on the Saffir-Simpson scale (Simpson & Saffir, 1974). The intense 
TCs cause the major portion of destructions from all TCs (Pielke et al., 2008), drawing much attention on their 
forecast errors. And the intensities of intense TCs are usually underestimated while the intensities of weak TCs 
tend to be overestimated (Huang et al., 2021; Lei et al., 2020). So only intense TCs are taken as evaluated cases 
in the present study to avoid confusing the properties of all kinds of TCs. Though selecting TCs within 1 year 
may cause lack of time variability, the climate regimes of the cases are guaranteed to be as similar as possible. 
The 2018 WNP TC season was known to be highly active and the number of severe TCs was abnormally large 
(Wu et al., 2020), the unusual tracks and the extreme intensities of which brought great challenge to numerical 

Table 1 
2018 TC Cases for Evaluation

Number Name Category Simulation period Days

1 Maria 5 2018-07-05_00∼2018-07-11_00 6

2 Cimaron 4 2018-08-19_00∼2018-08-24_00 5

3 Jebi 5 2018-08-29_00∼2018-09-04_00 6

4 Mangkhut 5 2018-09-09_00∼2018-09-17_00 8

5 Kong-rey 5 2018-09-30_00∼2018-10-06_00 6

6 Yutu 5 2018-10-23_12∼2018-10-30_00 6.5

Note. The category refers to Saffir-Simpson Intensity Scale.
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forecasts (Lei et al., 2020). Therefore, using 2018 WNP major TCs for evaluating physical parameterizations has 
practical meaning.

The TC forecasts in this study are carried out by the advanced Weather Research and Forecast (WRF) model 
version 4.0 (Skamarock et al., 2019). The model is configured with two-way interactive three nested domains, 
of which the grid points are 264 * 190, 679 * 454, 307 * 307 with grid spacing of 27, 9, and 3-km, respectively. 
There are 45 vertical levels and the model top is at 50 hPa. All TCs have the same domain except for the center 
location of the innermost vortex-following domain. The initial and boundary conditions are obtained from NCEP 
GDAS/FNL 0.25° operational global analysis of 6 hr interval. The observed TC positions and intensities come 
from the International Best Track Archive for Climate Stewardship (IBTrACS, Knapp et al., 2010). And the fore-
cast output is compared with the observed data every 3 hr interval for the evaluation.

The WRF model offers a number of physical parameterization schemes and needs to be customized by users. TC track 
and intensity are considered most sensitive to cumulus convection, microphysics and planetary boundary layer (PBL) 
physical processes (Di et al., 2019; Raju et al., 2011; Srinivas et al., 2013). Thus in the present study only schemes of 
the three physical processes are tested for identifying the proper scheme combinations for TC forecasts. The cumulus 
parameterization schemes considered in this study are: Kain-Fritsch scheme (KF, Kain, 2004), Betts-Miller-Janjic 
scheme (BMJ, Janjic, 1994), Grell-Freitas ensemble scheme (GF, Grell & Freitas, 2014), Grell-3D scheme (G3, 
Grell & Dévényi, 2002), Tiedtke scheme (Tiedtke, 1989; Zhang et al., 2011), New Simplified Arakawa-Schubert 
(NSAS, Kwon & Hong, 2017). It is noticeable that the 3-km resolution is convection-permitting so cumulus schemes 
are only employed on the 27- and 9-km domains. The microphysics parameterization schemes considered in this 
study are: Purdue Lin scheme (Lin et al., 1983), WRF Single-Moment 5-class scheme (WSM5, Hong et al., 2004), 
Ferrier (Eta) scheme (Rogers et al., 2001), WRF Single-Moment 6-class scheme (WSM6, Hong & Lim, 2006), New 
Thompson scheme (Thompson et al., 2008), WRF Double-Moment 6-class scheme (WDM6, Lim & Hong, 2010). 
The PBL parameterization schemes considered in this study are: Yonsei University scheme (YSU, Hong et al., 2006), 
Mellor-Yamada-Janjic scheme (MYJ, Janjic, 1996), Mellor-Yamada Nakanishi and Niino Level 3 scheme (MYNN3, 
Nakanishi & Niino, 2006), ACM2 scheme (Pleim, 2007), BouLac scheme (Bougeault & Lacarrere, 1989), UW 
scheme (Bretherton & Park, 2009). Most PBL schemes are matched with the revised MM5 surface layer scheme 
(Jimenez et al., 2012) except for MYJ, which has to be matched with Janjic Eta surface layer scheme (Janjic, 1996). In 
addition to the above physical processes, other parameterization configurations of all experiments are kept the same, 
including the unified Noah land surface model (Tewari et al., 2004), the Rapid Radiative Transfer Model for GCM 
(RRTMG) longwave and shortwave radiation (Iacono et al., 2008) with the GHG concentration modified to 2018 
level, the Donelan and Garratt formulation for air-sea flux parameterization (Donelan et al., 2004; Garratt, 1994), and 
a 1D ocean model based on Pollard et al. (1973) to turn on the ocean temperature feedback.

2.2.  Experimental Design

As mentioned in the introduction, the ensemble forecasts with the testing scheme combinations should be 
performed in order to evaluate the combinations in the uncertainty context. Considering it is expensive to 
construct ensembles for every possible combination sampling from all schemes of the three physical processes, 
a few comparable combinations will be better selected first. So the selection approach similar to the hiring 
process consisting of the “pre-employment test” and the “interview” is performed. Due to the large number of job 
applicants, a simple test in advance is useful to shortlist good candidates so that everyone moving to the formal 
interview is ensured to meet the basic standards for the job (e.g., Hoffman et al., 2018).

In this study, the single scheme sensitivity experiments are conducted as the “pre-employment test” to pick the 
schemes with relatively low deterministic forecast errors. The combination of KF (cumulus), Lin (microphysics) 
and YSU (PBL) schemes is set to be the control experiment (CTL), considering that these classic schemes are 
widely used in TC high resolution studies (e.g., Choudhury & Das, 2017; Mohan et al., 2019; Nekkali et al., 2022; 
Rogers, 2010), and the Lin scheme has been reported to produce the strongest TCs among various microphys-
ics schemes (e.g., Maw & Min, 2017; Tao et al., 2011) which may improve the intensity forecasts for category 
4–5  TCs in this study. For each sensitivity experiment, only one physical scheme is changed from the CTL 
configuration, while two other schemes remain unchanged. There are a total of 15 sensitivity experiments and 1 
CTL experiment conducted for six evaluated TCs, as listed by Table 2. The sensitivity experiments with relatively 
lower deterministic forecast errors indicate better performance of the schemes different from the CTL configu-
ration. The combinations of these schemes are likely to produce lower errors in deterministic forecasts as well as 
ensemble forecasts. Note that the setup of CTL and sensitivity experiments has no meaning other than narrowing 
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the range of combination candidates, which can also be achieved by testing 
all combinations of the 6 cumulus, 6 microphysics and 6 PBL schemes.

After obtaining the combinations of schemes with relatively lower errors, it 
is time to “interview” the combinations comprehensively. The deterministic 
forecasts and the ensembles forecasts with the configurations of these physical 
parameterization combinations are carried out and compared. As mentioned 
in the introduction, this study mainly focuses on the model uncertainty and 
its interaction with the physical parameterization scheme errors, thus employs 
SKEB perturbations to construct ensemble forecasts for the pre-selected combi-
nations. SKEB adds random perturbations, with prescribed temporal and spatial 
correlations, to the physical parameterization tendency of horizontal wind and 
potential temperature at every time step. The temporal correlation is determined 
by the autoregressive parameter which is the quotient of the time step and a 
given decorrelation time. The spatial correlation is determined by the perturbed 
wavenumber spectrum which is correlated with the dimensions of the WRF 
domain. The default configurations of SKEB in WRF v4.0 are used in this 
study, including the default total backscattered dissipation rate which controls 
the perturbation amplitude, the default decorrelation time which determines the 
temporal correlation, the default addition only to the outermost domain with 
all wavenumbers involved. The perturbations are set to be vertically incoherent 
with a westward tilt, just like those in Judt et al. (2016). The SKEB ensemble 
forecasts with various physical parameterization combinations are conducted 
for six TCs, each consisting of 10 members. Since the domains and resolutions 
are identical, the SKEB perturbations adding to the forecasts with various phys-

ical parameterization combinations are the same. Thus the resulting differences between various forecast distributions 
can reflect the performance differences of various schemes which interact with the identical model perturbations.

In the present study, the deterministic forecast error for TC track, minimum sea level pressure (Min SLP) and 
10-m maximum surface wind (Max Wind) is computed as the absolute error at every lead time. When pooling all 
lead times and all cases together, it is expressed as the RMSE averaged over all cases:

RMSE =
1

𝑁𝑁

𝑁𝑁
∑

𝑘𝑘=1

√

√

√

√
1

𝑇𝑇

𝑇𝑇
∑

𝑡𝑡=1

[𝑦𝑦𝑘𝑘(𝑡𝑡) − 𝑜𝑜𝑘𝑘(𝑡𝑡)]
2
.� (1)

where 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) and 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) represent the forecast and observed variables (location, Min SLP or Max Wind) at lead time 
𝐴𝐴 𝐴𝐴  for the 𝐴𝐴 𝐴𝐴 th case, 𝐴𝐴 𝐴𝐴  is the total number of lead times. As six TCs have different simulation periods from 5 to 

8 days while the frequencies of the forecast output and the observation are equally 3 hr, 𝐴𝐴 𝐴𝐴  varies from 40 to 64 for 
various cases. 𝐴𝐴 𝐴𝐴 is the total number of evaluated cases, here refers to six.

For ensemble forecasts, the ensemble mean error is calculated the same as the deterministic forecast error, except 
for substituting the ensemble mean 𝐴𝐴 𝑦𝑦 for the single forecast value 𝐴𝐴 𝐴𝐴 . The ensemble spread is computed as the 
standard deviation 𝐴𝐴 𝐴𝐴 at every lead time, and is expressed analogously to the average RMSE when pooling all lead 
times and all cases together, as follows,

Spread =
1
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where 𝐴𝐴 𝐴𝐴ki(𝑡𝑡) and 𝐴𝐴 𝑦𝑦𝑘𝑘(𝑡𝑡) represent the 𝐴𝐴 𝐴𝐴  th forecast member and the ensemble mean at lead time 𝐴𝐴 𝐴𝐴  for the 𝐴𝐴 𝐴𝐴 th case. 
𝐴𝐴 𝐴𝐴 is the total number of ensemble members, here referring to ten.

3.  Results
3.1.  Single Scheme Sensitivity

A few schemes with relatively low deterministic forecast errors need to be selected to form comparable scheme 
combinations primarily. Figure 1 presents the deterministic forecast errors of the CTL and the other 15 single 

Table 2 
Sensitivity Experimental Design

Cumulus Microphysics PBL

CTL KF LIN YSU

1 BMJ LIN YSU

2 GF LIN YSU

3 G3 LIN YSU

4 Tiedtke LIN YSU

5 NSAS LIN YSU

6 KF WSM5 YSU

7 KF Ferrier YSU

8 KF WSM6 YSU

9 KF Thompson YSU

10 KF WDM6 YSU

11 KF LIN MYJ

12 KF LIN MYNN3

13 KF LIN ACM2

14 KF LIN BouLac

15 KF LIN UW
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scheme sensitivity experiments listed in Table 2, computed by pooling all lead times and evaluate cases together. 
Since the error of each scheme is averaged over limited number of TC cases, the 5%–95% confidence interval of 
the average is estimated by a bootstrap method (N = 1,000).

There are diverse sensitivity characteristics of the TC track and intensity forecasts to three types of physical 
parameterization schemes. The track errors produced by the cumulus schemes vary much more greatly compared 
to those produced by the microphysics and PBL schemes, with the lowest error from the Tiedtke being 170 km 
while the highest error from the G3 being up to 440 km (Figure 1a). So the standard deviation of the cumulus 
scheme errors is 102 km, much larger than that of other two types of schemes (24 and 9 km respectively). But 
the intensity errors are a bit more uniform among cumulus schemes than among other two types of physical 
schemes (Figures 1b and 1c), with the standard deviations of Min SLP errors being 1.4, 2.1, and 2.3 hPa and the 
standard deviations of Max Wind errors being 1.5 knots, 2.0 knots and 3.0 knots, respectively. It is evident that 
the TC track forecasts are much more sensitive to cumulus schemes than other two types of physical schemes, 

Figure 1.  The deterministic forecast errors of the CTL (red solid line) and 15 single scheme sensitive experiments (gray bars) for (a) track, (b) Min SLP, (c) Max Wind, 
pooling all lead times and evaluated cases together. The vertical lines attached to each error bar indicate the 5%–95% bootstrap confidence intervals, the red dash lines 
indicate the confidence intervals of the CTL experiment, and the blue dash line represents the average of 16 experiments.
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whereas the TC intensity forecasts are sensitive to all three types of physical 
parame terization schemes. The dependence variation of track and intensity 
forecast errors on the physical processes is similar to that in the previous stud-
ies (Di et al., 2019; Li & Pu, 2008; Mohan et al., 2019; Srinivas et al., 2013; 
Tao et al., 2011).

The deterministic forecast errors of all 16 experiments are ranked for the 
selection. The schemes sorted from low to high track errors are: Thompson, 
MYJ, WSM5, Tiedtke, ACM2, CTL, BouLac, MYNN3, UW, WSM6, 
WDM6, Ferrier, NSAS, GF, BMJ and G3. The schemes sorted from low to 
high Min SLP errors are: MYJ, CTL, GF, Tiedtke, BouLac, NSAS, WSM6, 

UW, BMJ, MYNN3, Ferrier, WSM5, G3, Thompson, ACM2 and WDM6. The schemes sorted from low to high 
Max Wind errors are: CTL, BouLac, UW, GF, WSM6, Tiedtke, NSAS, BMJ, MYJ, G3, WSM5, Thompson, 
MYNN3, Ferrier, ACM2 and WDM6. The error differences between adjacent schemes are not statistically signif-
icant among limited number of TC cases as shown by bootstrap confidence intervals.

The deterministic forecast error of the CTL can be seen as the criterion in comparing the performance of 15 single 
scheme experiments since there is only one single physical scheme changed from the CTL configuration of each 
sensitivity experiment. For TC track forecasts, the CTL configuration has an above-average performance among 
all experiments (Figure 1a). The error differences between most schemes and the CTL are not very significant, 
except for the G3 and BMJ, which produce significantly larger errors than the CTL. For the TC intensity forecasts, 
the CTL almost performs the best besides the MYJ in Min SLP forecasts (Figure 1b). Therefore, the CTL config-
uration is indeed of superiority for TC forecasts and the three schemes combining it are chosen as candidates.

As shown in the sensitivity experiments for three types of physical parametrization schemes, the cumulus schemes 
with low track errors, as well as the microphysics schemes and PBL schemes with low intensity errors need to be 
especially considered during the selection. As Tiedtke is the only cumulus scheme among the schemes of lowest 
track errors and also performs well in intensity forecasts, it is chosen as a candidate. The WSM6 produces lower 
intensity errors than other four microphysics schemes, but is still not comparable to the default Lin microphysics 
scheme in CTL (Figures 1b and 1c), and has error rankings just general in the track forecasts among 16 experiments 
(Figure 1a), so no microphysics scheme is chosen. The BouLac and the UW of PBL schemes perform above-average 
in the track and Min SLP forecasts and rank almost the best in Max Wind forecasts, thus they are also chosen as 
candidates. Though the MYJ scheme ranks very well in Min SLP forecasts and track forecasts, it has Max Wind 
performance lagging much more behind, revealing the poor ability of catching the accurate wind-pressure relation-
ship, which may be caused by the surface layer scheme matched with MYJ not supporting an appropriate air-sea flux 
parameterization. Finally, the single schemes with relative lower deterministic forecast errors are selected: the KF 
and Tiedtke for cumulus schemes, the Lin for microphysics schemes, the YSU, BouLac, and UW for PBL schemes. 
Based on these schemes, six physical parameterization combinations (C1–C6) are constructed as shown in Table 3.

It is interesting that the confidence intervals of the scheme errors exhibit distinct widths. For example, the G3 
produces the highest track errors with the widest confidence interval of 390 km, while the Tiedtke has relative lower 
track errors with the narrowest confidence interval of less than 40 km, suggesting the big differences among the inter-
actions of the TC flow uncertainty and various scheme errors. The performances of some schemes are significantly 
case dependent whereas the performances of others are stable among TC cases. The uncertainty of TC flows is not as 
easily quantified as the model uncertainty or the initial condition uncertainty due to the large variance of TC events. 
But this phenomenon denotes the importance of considering all kinds of uncertainty sources during the evaluations.

Note that the preselection process based on the CTL configuration has the risk of losing other potential 
well-performed combinations. The schemes not chosen may produce lower errors combining with other configu-
rations and the combinations may have good performances in the uncertainty context. However, the preselection 
process is a compromise to the limited computation resources. With the relatively small number of combinations, 
the performance of physical parametrizations in ensemble forecasts can be evaluated efficiently.

3.2.  Deterministic and Ensemble Forecast Errors

After obtaining the combinations of physical parameterization schemes with relatively lower errors in Table 3, 
the deterministic forecasts and the SKEB perturbed ensembles forecasts with these physical parameterization 

Table 3 
Six Physical Parameterizations Combinations of Cumulus, Microphysics 
and PBL Schemes

C 1 C 2 C 3 C 4 C 5 C 6

Cumulus KF KF KF Tiedtke Tiedtke Tiedtke

Microphysics Lin Lin Lin Lin Lin Lin

PBL YSU BouLac UW YSU BouLac UW
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combinations are carried out (Figure 2). The mean of deterministic forecast errors over six combinations are 
lower than those of 16 experiments as shown in Figure 1, with the former of 183 km, 19 hPa, 24 knots and the 
latter of 206 km, 21 hPa, 27 knots for track, Min SLP and Max Wind forecasts respectively. The standard devia-
tions of the deterministic forecast errors of six combinations are reduced as well compared to those of 16 exper-
iments, with the former of 11 km, 0.9 hPa, 1.4 knots and the latter of 72 km, 2.2 hPa, 2.5 knots. The reductions 
of the mean deterministic forecast errors and the standard deviations imply that the obtained combinations are 
indeed comparable with similar good performances.

Introducing the model uncertainty represented by SKEB perturbations has shown pronounced effects on the 
performance of combinations. Compared to the deterministic forecast errors, the ensemble mean errors of six 
combinations are all declined while the declines are more significant in track errors than that in intensity errors 
according to the bootstrap confidence intervals. The track errors of C1, C2 and C3 show the largest declines 
(though not significant according to the confidence intervals) and the confidence intervals of the track errors 
exhibit a sharp narrowing of nearly 33% (Figure 2a), indicating the combinations not only reducing errors but also 
performing more stable among TC cases in the context of model uncertainty. Thus the ensemble perturbations 
prove reasonable and effective in reducing the stochastic errors in TC forecasts.

Despite all producing lower ensemble mean errors than the deterministic forecast errors, the six combinations 
reduce errors by different degrees, leading to changes in the relative performances of six combinations. For 

Figure 2.  The deterministic error (blue), the ensemble mean error (green) and the ensemble spread (orange) of six combinations for (a) track, (b) Min SLP, (c) Max 
Wind forecasts, pooling all lead times and evaluated cases together. The vertical lines indicate the 5%–95% bootstrap confidence intervals.
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track forecasts, C1, C2 and C3 originally perform worse than C4 and C5 in deterministic forecasts, but they 
surpass the latter two combinations in terms of the ensemble mean errors (Figure 2a). For intensity forecasts, 
C2 produces higher deterministic forecast errors than C1 but has the ensemble mean errors similar to C1 in 
Min SLP forecasts and lower than C1 in Max Wind forecasts (Figures 2b and 2c). The performance difference 
between the deterministic forecast error and the ensemble mean error of the scheme combination denotes the 
importance of considering the forecast uncertainty for the evaluation, since the deterministic forecast value is 
only a sample of the forecast distribution and not able to represent the overall performance of the parameteri-
zation combination.

Carrying out the evaluations in the uncertainty context, or in the ensemble forecasts, should not neglect the 
ensemble spread, which estimates the forecast uncertainty and can reflect the reliability of ensemble forecasts 
compared with the ensemble mean error. Here, the TC track and intensity forecasts are characterized by different 
spread–error relationships. For track forecasts, the ensemble spreads are larger than the ensemble mean errors, 
no matter significantly (C1, C2, C3) or not significantly (C4, C5, C6) (Figure 2a). But for Min SLP and Max 
Wind forecasts, the ensemble spreads are significantly smaller than the ensemble mean errors of all combina-
tions (Figures 2b and 2c). The results indicate that when pooling all lead times together, the ensemble spread 
efficiently represents the errors in TC track forecasts and even becomes over-dispersive, while showing severe 
under-dispersion in TC intensity forecasts. The much larger error relative to the spread is mainly due to the 
systematic bias of the TC intensity forecasts, which is a common issue in current operations and research (e.g., 
Aemisegger, 2009; Torn, 2016; Zhang, 2018). And for intense TCs the intensity underestimation is especially 
heavy (e.g., Lei et al., 2022). Besides, the development of SKEB perturbations cannot catch up with that of the 
initial condition errors in short terms. There has been an intensity error from the initialization time which grows 
fast during the RI period, while the ensemble spread starts from zero and grows at a much slower rate (Figure 3c). 
The above reasons lead to the inconsistency of spread–error relationship in TC intensity ensembles, emphasizing 
the importance of TC initialization or data assimilation as well as developing physical parameterizations more 
suitable for TC intensifying conditions.

The performances of six combinations are different not only in terms of the ensemble mean error, but also in 
terms of the ensemble spread. For intensity forecasts, C3 has a significantly larger spread than C2, C4, C5 albeit 
the ensembles of these combinations all being under-dispersive (Figures  2b and  2c). For track forecasts, the 
combinations also exhibit different values of the ensemble spread, but are less significant than that of intensity 
forecasts (Figure 2a). The spread variance denotes that even in an identical uncertainty context represented by 
SKEB perturbations, the ensemble forecasts with six parameterization combinations still disperse to different 
degrees and generate probabilistic distributions of different widths. This is just because of the distinct interac-
tions of the model uncertainty and various combination errors. Thus, the ensemble mean error and the ensemble 
spread need to be considered concurrently for the evaluations. However, an objective selection is hard to achieve 
since the relative performances of two ensemble metrics are not necessarily consistent for each combination. For 
example, C4 produces the highest ensemble mean error while C3 has the largest ensemble spread in Max Wind 
forecasts (Figure 2c). Besides, the error and the spread computed by pooling all lead times and all cases together 
do not coincide with the error and the spread at every lead time for a single TC case. Therefore, it is necessary to 
combine the ensemble mean error with the ensemble spread in a more natural way, that is, evaluating the combi-
nations based on the overall quality of the forecast distribution.

4.  Assessing the Overall Performance of Scheme Combinations
A number of scores have been raised for the verification of forecast probabilistic distributions (e.g., Gneiting & 
Raftery, 2007; Roulston & Smith, 2002; Wilks, 2019). Continuous Ranked Probability Score (CRPS) is one of 
those used most commonly (Matheson & Winkler, 1976). It is defined as the integral of the squared difference 
between the cumulative distribution function of the probabilistic forecast 𝐴𝐴 𝐴𝐴 (𝑦𝑦) and the cumulative distribution 
function of the observation 𝐴𝐴 𝐴𝐴𝑜𝑜(𝑦𝑦) ,

CRPS =

∞

∫
−∞

[𝐹𝐹 (𝑦𝑦) − 𝐹𝐹𝑜𝑜(𝑦𝑦)]
2
𝑑𝑑𝑑𝑑𝑑� (3)

where
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𝐹𝐹𝑜𝑜(𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

0, 𝑦𝑦 𝑦 𝑦𝑦

1, 𝑦𝑦 ≥ 𝑜𝑜

,� (4)

𝐴𝐴 𝐴𝐴𝑜𝑜(𝑦𝑦) is a cumulative-probability step function that jumps from 0 to 1 at the point where the forecast variable 𝐴𝐴 𝐴𝐴 
equals to observation 𝐴𝐴 𝐴𝐴 .

Alternatively, the CRPS can also be formulated as (Gneiting & Raftery, 2007)

CRPS = 𝐸𝐸𝐹𝐹 |𝑌𝑌 − 𝑜𝑜| −
1

2
𝐸𝐸𝐹𝐹 |𝑌𝑌 − 𝑌𝑌 ′

|,� (5)

where 𝐴𝐴 𝐴𝐴𝐹𝐹 denotes the statistical expectation of the continuous variable in 𝐴𝐴 | ⋅ | , of which the forecast distribution 
is 𝐴𝐴 𝐴𝐴 (𝑦𝑦) . 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 ′ are different samples from the continuous forecast value 𝐴𝐴 𝐴𝐴 . The first term reflects the average 
distance of every forecast sample 𝐴𝐴 𝐴𝐴  and the observation 𝐴𝐴 𝐴𝐴 . And the second term reflects the average distance of 
all pairs of two different forecast samples.

Figure 3.  The ensemble mean error (solid line) and the ensemble spread (dashed line) as a function of lead time (a), (c), 
and the eCRPS as a function of lead time (b), (d) of two combinations for the single TC forecast, where (a), (b) for the track 
forecasts of Kong-rey (2018), and (c), (d) for the Min SLP forecasts of Jebi (2018). The asterisks next to the left vertical axis 
indicate the ensemble mean error or the eCRPS pooling all lead times together of two combinations. Period K and Period J 
represent the time periods of focused analysis for Kong-rey and Jebi, respectively.
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CRPS has the same units as the forecast variables, and reduces into the absolute error when applied to a single 
deterministic forecast, thus the score provides a direct way to compare the deterministic forecast and the prob-
abilistic forecast (Gneiting & Raftery, 2007; Hersbach, 2000). Similar to the absolute error, a lower value of 
CRPS indicates better skill. According to the physics and the hypothetical example in Wilks (2019, pp. 425–426), 
the forecast distribution tends to be rewarded by CRPS when concentrating around the observed value, which 
influenced not only by the mean error but also by the spread assuming a unimodal distribution. CRPS is able to 
quantify the accuracy of the probabilistic forecast, and it is a strictly proper score while the ensemble mean error 
or the ensemble spread is not (Du, 2021; Smith et al., 2015). “Strictly proper” means that the score achieves the 
lowest only when the best forecast distribution occurs (Bröcker & Smith, 2007; Gneiting & Raftery, 2007), in 
which the observation is statistically indistinguishable from any of the ensemble members, thus the forecast bias 
is zero and the ensemble spread equals to the ensemble mean error. Being strictly proper is important for the 
verification to be carried out honestly.

Considering that the ensemble forecasts estimate the forecast probabilistic distribution with limited number of 
ensemble members, a discrete expression of Equation 5 or the “ensemble” CRPS (Gneiting & Raftery, 2007; 
Wilks, 2019, p. 444), which possesses exactly the same properties as CRPS, is more appropriate to evaluate the 
quality of ensemble forecasts.

eCRPS =
1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

|𝑦𝑦𝑖𝑖 − 𝑜𝑜| −
1

𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛−1
∑

𝑖𝑖=1

𝑛𝑛
∑

𝑗𝑗=𝑖𝑖+1

|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗|.� (6)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑗𝑗 are different members of the ensembles and 𝐴𝐴 𝐴𝐴 is the total number of ensemble members. There-
fore, the performance of various physical parameterization combinations in ensemble forecasts can be quantified 
and evaluated directly in terms of eCRPS, albeit being both different in the ensemble mean error and in the 
ensemble spread. Similar to the computation of the ensemble mean error and the ensemble spread, the eCRPS is 
computed at every lead time for TC track, Min SLP and Max Wind forecasts, and turns to a single value in the 
same way when pooling all lead times and all evaluated cases together.

In order to examine how eCRPS behaves in reflecting the overall performance of the scheme combinations in 
ensemble forecasts, the eCRPS as a function of lead time is first analyzed for two combinations in the forecasts of 
the single TC case, and is compared with the ensemble mean error as well as the ensemble spread as a function 
of lead time.

Figure 3a shows the times series of the ensemble mean error and the ensemble spread of C1 and C5 in the track 
forecasts for Kong-rey (2018), and Figure 3b displays the corresponding time series of eCRPS. The track error 
and spread of two combinations increase monotonically with increasing forecast lead times (Figure 3a), agreeing 
well with the normal evolution of the track uncertainty (e.g., Judt et al., 2016). Before Period K, the error and the 
spread of C1 and C5 grow at similar rates. The error of C5 is slightly higher than C1 while the spreads of two 
combinations are basically the same, thus the differences between two forecast distributions mainly come from 
the error differences, with C5 exhibiting slightly higher eCRPS than C1. In Period K, the spreads grow much 
faster and both ensembles become over-dispersive for the two combinations. The error of C5 also grows fast at a 
similar rate as the spread and reaches to 360 km at the end of the forecast, while the error of C1 keeps fluctuating 
between 90 and 160 km. Though producing higher errors, C5 exhibits an obviously better spread–error relation-
ship than C1. So during the former part of Period K when the error differences between two combinations are 
little, C5 has slightly lower eCRPS than C1. Even during the latter part of Period K when the error differences 
become large, the eCRPS of C5 is not much higher than C1. The increase in errors appears to be offset to some 
extent by the good consistency between the error and the spread. So C5 exhibits the eCRPS of 200 km at the end 
of the forecast, much lower than the ensemble mean error. On the contrary, despite no increase in errors during 
Period K, the over-dispersion of the C1 ensemble forecast is strengthening. This leads to a worsening forecast 
distribution for C1, which can be reflected by the continuously increasing eCRPS during Period K. When pooling 
all lead times together, the relative performances of two combinations in terms of the ensemble mean errors are 
different from that in terms of the quality of forecast distributions, as the mean error of C5 is 40 km higher than 
C1 while the mean eCRPS of two combinations are of similar values.

Different from the monotonic increase of track errors, the maximum of intensity errors is strongly associated 
with the rapid intensification (RI) process. Figure 3c displays the times series of the ensemble mean error and the 
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ensemble spread of C3 and C6 in the Min SLP forecasts for Jebi (2018), and Figure 3d displays the correspond-
ing time series of eCRPS. Before Period J, the Min SLP errors of two combinations all exhibit the trends of first 
increasing and then declining, and reach the maximum at the peak intensity of Jebi (2018). The spreads of two 
combinations grow slowly and are much smaller than the errors, leading to the ensembles for two combinations 
very under-dispersive at similar degrees. During this period, the quality of the forecast distribution is dominated 
by the ensemble mean errors, with C3 exhibiting higher eCRPS than C1. In Period J, the errors of two combina-
tions grow again at a slow rate while the spreads of two combinations show different features, with the spread of 
C3 being much larger than that of C6. During the former part of Period J, the errors of two combinations are of 
similar values as the spread of C6 but are much lower than the spread of C3, denoting that C3 is over-dispersive 
while C6 has a good spread–error relationship. Thus the corresponding eCRPS of C3 is higher than C6, albeit the 
error of C3 is slightly lower. However, during the latter part of Period J, the errors of two combinations grow to 
the similar values as the spread of C3 and become much larger than the spread of C6, making the spread–error 
relationship of C3 turn better while that of C6 becomes under-dispersive. The corresponding eCRPS explicitly 
reflects the changes of the quality of forecast distributions, with C6 exhibiting much higher eCRPS than C3 
during the latter part of Period J. When pooling all lead times together, C6 shows a better performance both in 
terms of the eCRPS and the ensemble mean errors. But the mean eCRPS difference of two combinations is only 
half of the mean error difference, suggesting that the performance differences of the forecast distributions for two 
combinations are not so large as denoted by the ensemble mean errors.

The forecasts of two TC cases indicate that the evaluations based on the eCRPS include more comprehensive 
information of the forecast probability distribution compared to that based on the ensemble mean error, thus are 
effective in reflecting the overall performance of scheme combinations in ensemble forecasts. In addition, it can 
be shown in Figure 3 that at the initial forecast time, when the ensemble spread is small and various ensemble 
members can be seen as a single forecast, the eCRPS is basically equal to the ensemble mean error. As the 
spread grows, the value of eCRPS is overall reduced relative to the ensemble mean errors. Pooling all lead times 
together, the eCRPS also exhibits lower value than the ensemble mean error. Since eCRPS provides a direct way 
to compare the deterministic forecast and the probabilistic forecast, the above phenomenon shows the superiority 
of the forecast distribution over a single ensemble mean.

Figure 4 shows the eCRPS as well as the ensemble mean error and the deterministic forecast error of six combi-
nations pooling all lead times and all evaluated cases together. Given that eCRPS reduces into the absolute error 
when applied to a single forecast, the eCRPS is the same as the deterministic forecast error for a deterministic 
forecast, and is the same as the ensemble mean error for an ensemble mean forecast. No matter in track or inten-
sity forecasts, the eCRPS all decline relative to the ensemble mean errors, just like that the ensemble mean errors 
all decline relative to the deterministic forecast errors, indicating that the forecast performance continuously 
improves from the deterministic forecast to the ensemble mean forecast, and finally to the probabilistic forecast 
which includes the largest amount of forecast information.

As shown in Section 3, the relative performances of six combinations in the ensemble mean forecasts are not 
consistent with that in the deterministic forecasts. The relative performances of six combinations in the prob-
abilistic forecasts are not consistent with that in the deterministic forecasts as well (Figure 4), confirming that 
the evaluations based on the deterministic forecast errors is limited. Moreover, the relative performances of six 
combinations in the probabilistic forecasts have changed from that in the ensemble mean forecasts. Take Min 
SLP forecasts for example, (Figure 4b), C3 has the highest ensemble mean errors, while C4 and C6 have the 
second highest errors. But the eCRPS of C3 and C6 are both lower than C4, rendering C4 to become the worst 
combination. The inconsistency between the eCRPS and the ensemble mean error may be due to the significantly 
larger spreads (i.e., better spread–error relationship) of C3 and C6 than C4 in Min SLP forecasts (Figure 2b), 
which affects the overall quality of the forecast probability distributions. Therefore, the evaluations only based 
on the ensemble mean error are as misleading as based on the deterministic forecast error. The quantification in 
terms of eCRPS is more appropriate to evaluate the overall performance of the physical parameterization combi-
nations in ensemble forecasts.

The well-performed combinations for TC track, Min SLP and Max Wind forecasts emerge from the evaluated 
combinations respectively referring to Figure 4. For TC track forecasts, the best combination is C2, while C1 
and C3 also produce relative lower values of eCRPS than other combinations. For Min SLP forecasts, albeit little 
differences among the eCRPS of six combinations, C1 and C5 rank the best. For Max Wind forecasts, C2 and C5 
both produce the lowest values of eCRPS with C5 showing a narrower confidence interval than C2.
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Note that CRPS is not the only choice for verifying the probabilistic forecast. Another widely-used scoring rule 
is the Ignorance Score (Roulston & Smith, 2002). Ignorance Score is the only strictly proper score that also 
exhibits locality, which means the score depends solely on the forecast probability at the observation, not on 
other features of the forecast distribution (Bröcker & Smith, 2007; Du, 2021). However, Ignorance Score is very 
sensitive to outliers, and the forecast distribution far away from the observation is penalized heavily by the score 
(Wilks, 2019, pp. 428–429). Thus when the ensemble forecasts are very under-dispersive, like the RI period in 
Figure 3c, the Ignorance Score will be abnormally high (not shown). CRPS is not so sensitive to the outliers so 
the score keeps comparable at all lead times. Moreover, CRPS has the same unit as the observation and turns to 
the absolute error for a deterministic forecast, thus provides a direct way to compare the deterministic forecast 
and  the probabilistic forecast (Gneiting & Raftery, 2007), which meets the request of this study well. In general, 
the preference of scoring rules depends on the circumstances of forecast users, if the locality is viewed as a desir-
able property, then the Ignorance Score should be recommended (Du, 2021).

5.  Assessing the Multivariate Performance
Instead of making a subjective selection according to the results of Section 4, this section employs a multivariate 
extension of eCPRS, the ensemble Energy Score (eES), to quantitatively assess the multivariate performance 

Figure 4.  The deterministic error (blue), the ensemble mean error (green) and the eCRPS (red) of six combinations for (a) track, (b) Min SLP, (c) Max Wind forecasts, 
pooling all lead times and evaluated cases together. The vertical lines indicate the 5%–95% bootstrap confidence intervals.
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of six combinations in TC forecasts. The eES is a commonly used score 
for multivariate verifications of ensemble forecasts (Gneiting et al., 2008). 
It combines the forecast probability distributions of different variables as a 
vector distribution and assesses the overall quality of the vector distribution.

eES =
1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

‖𝒚𝒚𝑖𝑖 − 𝒐𝒐‖ −
1

𝑛𝑛(𝑛𝑛 − 1)

𝑛𝑛−1
∑

𝑖𝑖=1

𝑛𝑛
∑

𝑗𝑗=𝑖𝑖+1

‖𝒚𝒚𝑖𝑖 − 𝒚𝒚𝑗𝑗‖.� (7)

where the Euclidean distance in the 𝐴𝐴 𝐴𝐴 -dimensional space of the vector ensem-
ble 𝐴𝐴 ‖ ⋅ ‖ substitute for the absolute value in Equation 6. In case of 𝐴𝐴 𝐴𝐴 = 1 , the 
eES reduces to the eCPRS. Similar to eCRPS, the eES is strictly proper and 
a lower value of the score indicates better performance. Since eES does not 
make any distinctions between the components of the forecast vector, the 
absolute differences (𝐴𝐴 |𝑦𝑦𝑖𝑖 − 𝑜𝑜| and 𝐴𝐴 |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗| ) of each variable are standardized 
by the standard deviation of all absolute errors (pooling all lead times and all 
TCs together) to be comparable in magnitude. Then the intensity ensemble 
averaged over the Min SLP and Max Wind ensembles is combined with the 
track ensemble as a vector ensemble to compute the eES at every lead time.

Figure 5 shows the eES of six scheme combinations, pooling all lead times 
and evaluated cases together as well. Obviously, C2 has the lowest value 
of eES, exhibiting the best multivariate performance. It is reasonable as C2 
is the best combination in track forecasts and performs relatively good in 
intensity forecasts. Besides, C1 and C3 rank the second and the third respec-

tively in terms of eES among six combinations, also exhibiting a relative good multivariate performance. The 
multivariate performance of the combinations seems consistent with the track performance, but in fact there 
are indeed  influences of intensity performance on eES. For example, the eES of C5 is smaller than C4, which 
is consistent with the relative performance in Min SLP and Max Wind forecasts (Figures 4b and 4c) but is not 
reflected in track forecasts (Figure 4a).

It is noteworthy that the eES was challenged on not sufficiently sensitive to the correlations among the compo-
nents of the forecast vector (Pinson & Girard, 2012). There are other multivariate scores such as the variogram 
score (Scheuerer & Hamill, 2015) and the David-Sebastiani score (Dawid & Sebastiani, 1999) addressing this 
issue. However, these scores need to compute the differences or the covariance matrix between various compo-
nents of the vector. They are not applicable for the TC track and intensity forecasts, as the location of TC is in 
fact a two-dimensional variable while Min SLP and Max Wind are one-dimensional variables. Considering the 
non-negligible correlations between the location and intensity for TCs, seeking a new variable or index which can 
reflect the multivariable features of TCs may provide an alternative way, so that the multivariate verifications will 
turn into the univariate ones based on the standard univariate scores (e.g., eCRPS).

6.  Validation
In order to validate the well-performed combination C2 and other two combinations C1 and C3, these combina-
tions are further analyzed with three intense TC cases, Lingling, Lekima and Hagibis in 2019 WNP (Table 4). 
For the three 2019 TC forecasts, the domains, the model set-up and the forcing data are the same as the 2018 TC 
forecasts.

Figure 6 shows the performances of C1, C2 and C3 in the track and intensity 
forecasts of three 2019 TC cases. The ensemble mean errors of three 2019 
TCs all decline relative to the deterministic forecast errors, and the eCRPS 
all decline relative to the ensemble mean errors, just like the results of pool-
ing all 2018 TCs together (Figure 4), further verifying the superiority of the 
probabilistic forecast over the ensemble mean or the deterministic forecast. 
Besides, the ensemble spreads are smaller than the ensemble mean errors 
both in track and intensity forecasts, which is slightly different from the over-
all situation of 2018 TCs that are under-dispersive in intensity forecasts but 

Figure 5.  The standardized eES of six combinations, pooling all lead times 
and evaluated cases together. The vertical lines indicate the 5%–95% bootstrap 
confidence intervals.

Table 4 
2019 TC Cases for Validation

Number Name Category Simulation period Days

1 Lingling 4 2019-09-03_06∼2019-09-07_06 4

2 Lekima 4 2019-09-06_00∼2019-09-10_00 4

3 Hagibis 5 2019-10-06_12∼2019-10-12_12 6
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over-dispersive in track forecasts (Figure 2). However, the under-dispersion of 2019 TC track forecasts is reason-
able considering the much shorter simulation periods of three 2019 TCs than 2018 cases, as the ensemble spread 
grows fast at longer lead times for TC track forecasts (see Figure 3a).

Despite all showing declines from the deterministic forecast error to the ensemble mean error and finally to the 
eCRPS, the improvements of C1, C2 and C3 are of different degrees, similar to pooling all 2018 evaluated cases 
together (Figure 2). For example, in the Min SLP forecast for Hagibis (2019) (Figure 6b), the deterministic fore-
cast error of C3 is higher than C1 while C3 performs better than C1 in terms of the ensemble mean errors and 
the eCRPS. Moreover, there are also spread variances among the combinations for individual 2019 TC forecasts, 
consistent with 2018 TC forecasts (Figures 2b and 2c). In the intensity forecasts of three cases, C3 still exhibits 
the largest spread among three combinations (Figures 6b and 6c), especially for Lekima (2019).

C2 basically produces the lowest eCRPS no matter in track forecasts (Figure 6a) or intensity forecasts (Figures 6b 
and 6c), with the superiority of this combination most obvious for Haigibis (2019). When it turns to the multivar-
iate performance (Figure 7), C2 also produces the lowest eES among the selected combinations for all three 2019 
TC cases. The performance is consistent with that obtained from evaluating the 2018 TC forecasts (Figure 5), 
thus effectively validates the selected combination of C2, which refers to the combination of the KF cumulus 
scheme, the Lin microphysics scheme and the BouLac PBL scheme.

Figure 6.  The deterministic error (asterisk), the ensemble mean error (triangle), the ensemble spread (dot) and the eCRPS 
(circle) of the selected combinations for (a) track, (b) Min SLP, (c) Max Wind forecasts, pooling all lead times together. Red, 
blue and green represent the three TC cases Lingling (2019), Lekima (2019) and Hagibis (2019), respectively.
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7.  Conclusion and Discussion
Much efforts have been made to select the proper physical parameterization 
schemes for TC track and intensity forecasts. In general, the evaluations of 
physical parameterization schemes and their combined performance were all 
based on the deterministic forecast error, which had inherent limitations to 
represent the overall performance due to the existence of the model uncer-
tainty. This study introduces a realistic context of model uncertainty repre-
sented by the SKEB ensemble perturbations, and evaluates the combinations 
of cumulus, microphysics and PBL schemes in the model uncertainty context. 
Six 2018 WNP TCs with the intensity of at least category 4 are taken as 
evaluated cases. The deterministic forecasts and the SKEB-perturbed ensem-
ble forecasts with some pre-selected parameterization combinations are 
performed and compared.

It is found that introducing the model uncertainty has pronounced effects 
on the performance of scheme combinations. The ensemble mean errors of 
all combinations are declined compared to the deterministic forecast errors, 
both in track and intensity forecasts. But the scheme combinations reduce 
errors by different degrees, leading to changes in the relative performances. 
There are differences not only between the ensemble mean errors but also 
between the ensemble spreads of various combinations, indicating that the 
errors of various physical parameterization combinations interact with the 
identical perturbations in different ways, and contribute to different forecast 
distributions.

The overall quality of the forecast distribution is quantified by the eCRPS, which shows capable of reflecting 
more features of the forecast than only by the ensemble mean error or the ensemble spread. The performances 
of scheme combinations in the model uncertainty context, evaluated by eCRPS, are improved from those in 
the deterministic context. Moreover, the relative performances of scheme combinations in terms of eCRPS are 
changed from those in terms of the ensemble mean errors, as the probabilistic forecasts exhibit more comprehen-
sive information than the ensemble mean forecasts.

In order to obtain a well-performed scheme combination in both track and intensity forecasts, a multivariate 
extension of eCRPS, the eES, is employed to evaluate the overall quality of the combined forecast distributions of 
track, Min SLP and Max Wind. Finally, the KF cumulus scheme, the Lin microphysics scheme and the BouLac 
PBL scheme are identified to be the well-performed combination among the evaluated schemes for the forecasts 
of 2018 WNP intense TCs. The evaluation results are further validated in the forecasts of three intense TCs in 
2019 WNP.

This study accounts for the nonlinear interactions of model errors through SKEB ensembles to evaluate the 
performance of combinations of physical parameterization schemes. But there are other uncertainty sources not 
included, especially the initial condition errors. The nonlinear interactions between initial condition errors and 
the physical parameterization scheme errors should also have influences on the performance of scheme combi-
nations. However, it is impossible to reflect all kinds of uncertainty sources by limited members. Though it will 
be beneficial to reflect the combination performance more comprehensively by including the initial uncertainty, 
this study may be treated as the first step toward showing the influence of model uncertainty on the performance 
of scheme combinations.

Caution should be exercised as that although consistent results are found among the evaluation and validation 
processes, they may not be universally applicable due to the limited number of TC cases and experiments. More 
cases and experiments are needed for improving the statistical significance of the combination performance. The 
selected combination can only be viewed as the best-performed one among the evaluated schemes for the fore-
casts of six intense TCs. Some newly developed parameterization schemes which were denoted of physical supe-
riority should also be included in the future. Moreover, the errors, the spreads as well as the scores are computed 
pooling all lead times of the TC cases together to explicitly compare the performance of various combinations, 
thus the error evolutions of different time lengths are reduced to single values. Strictly speaking, various lead 

Figure 7.  The standardized eES of the selected combinations, pooling all 
lead times together. Red, blue and green represent the three TC cases Lingling 
(2019), Lekima (2019) and Hagibis (2019), respectively.
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times are not equal. So the relative performances of combinations may change if the time lengths for computing 
are altered.

Note that the superiority of the selected combination is only for TC track and intensity forecasts. The forecast 
performance of TC size has not been considered, because it is difficult to quantify the multivariate performance 
of different scheme combinations considering the complex relationship between TC size and TC intensity as well 
as that between different size metrics (Guo & Tan, 2017). Including the size evaluation should be carried out with 
more cautions in the future work.

Data Availability Statement
This manuscript uses Weather Research and Forecast (WRF) model version 4.0 (National Center for Atmospheric 
Research, 2018) for TC forecasts, which is available at http://dx.doi.org/10.5065/D6MK6B4K. The input data for 
the forecasts comes from the GDAS analysis (National Centers for Environmental Prediction, 2015), which is 
available at https://doi.org/10.5065/D65Q4T4Z. The observed TC positions and intensities come from the Inter-
national Best Track Archive for Climate Stewardship (IBTrACS, Knapp et al., 2018), which is available at https://
doi.org/10.25921/82ty-9e16. The figures are plotted by NCAR Command Language 6.6.2 (National Center for 
Atmospheric Research, 2019), which is accessible at http://dx.doi.org/10.5065/D6WD3XH5.
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