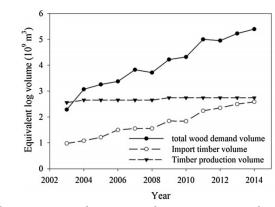




# The critical role of optimal forest management in China for meeting its wood demand and climate target

Haotian Zhang<sup>1</sup>, Hao Zhao<sup>1</sup>, Pekka Lauri<sup>2</sup>, Nicklas Forsell<sup>2</sup>, Petr Havlik<sup>2</sup>, Jinfeng Chang<sup>1,2</sup>

<sup>1</sup>College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China


<sup>2</sup>International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

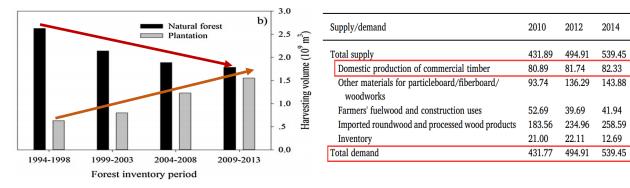


April 15, 2024

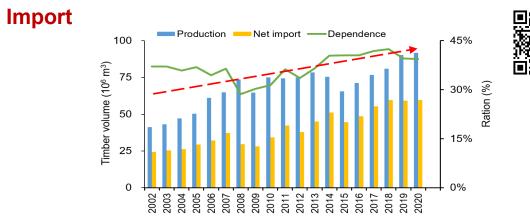
#### Woody materials: domestic production below demand, imports increasing






2.36-fold increase in wood consumption (2003-2014)

165-fold increase in annual forestry output (1978-2017)


#### > Supply

Demand

 $\geq$ 



Natural forests are the main source of timber Domestic production falls far short of consumption



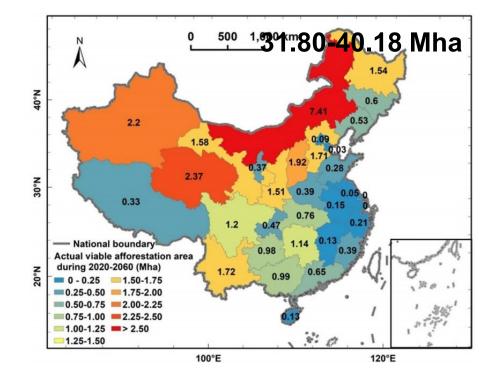
The import dependence reaches 40%

#### Natural forest logging ban

 $\geq$ 

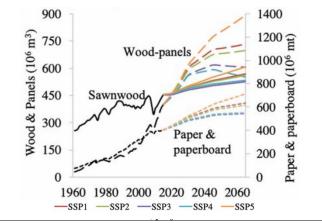
ENGLISH.GOV.CN THE STATE COUNCIL THE PEOPLE'S REPUBLIC OF CHINA

#### Logging to be prohibited in natural forests


Updated: August 22, 2019 09:22 China Daily 🚔

### Ban on commercial logging of natural forests from 2017 Managed forests will be the main source

(Ke et al., 2021, Forest Policy Econ.; Dai et al., 2018, Forest Ecol. Manag.)


#### Limited afforestation area and growing demand for woody products widen the gap

Maximum afforestation area



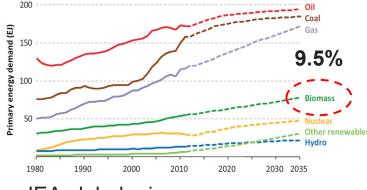
Limited reforestation survival area after 2020

#### Future timber demand



| Industrial roundwood |        |       | $(10^{\circ} \text{ m}^{\circ})$ |       |       |       |       |  |
|----------------------|--------|-------|----------------------------------|-------|-------|-------|-------|--|
| production           | Histor | rical | Projection to 2065               |       |       |       |       |  |
|                      | 1992   | 2015  | SSP1                             | SSP2  | SSP3  | SSP4  | SSP5  |  |
| ASIA                 | 277.9  | 399.7 | 623.5                            | 610.1 | 556.4 | 549.1 | 680.4 |  |
| China                | 92.4   | 167.2 | 316.0                            | 311.7 | 292.6 | 287.7 | 334.3 |  |
| India                | 36.3   | 49.5  | 97.4                             | 95.1  | 79.8  | 79.3  | 111.9 |  |
| Indonesia            | 43.1   | 74.0  | 62.8                             | 60.9  | 53.4  | 52.1  | 69.8  |  |
| Japan                | 27.1   | 21.3  | 20.1                             | 19.0  | 16.3  | 17.0  | 23.4  |  |
| Korea, Republic of   | 1.1    | 4.5   | 17.3                             | 16.1  | 14.6  | 15.0  | 20.3  |  |
| Malaysia             | 45.0   | 17.8  | 27.3                             | 25.9  | 22.2  | 21.9  | 32.6  |  |

Timber demand continues to rise rapidly over the


next 40 years

#### Growing gap between timber supply and demand

(Lu et al., 2022, Nat. Clim. Change; Johnston et al., 2019, PNAS)

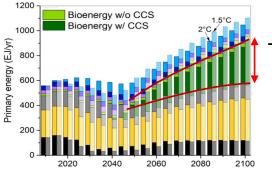
#### Wood biomass for energy (BE): vital for achieving the 1.5°C target

Global bioenergy use

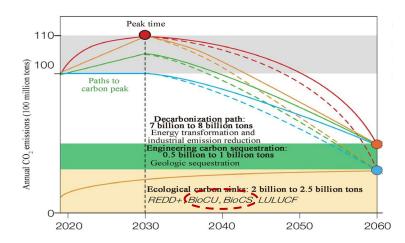


IEA global primary energy use

#### China bioenergy use




#### Biomass energy to provide heat, fuel

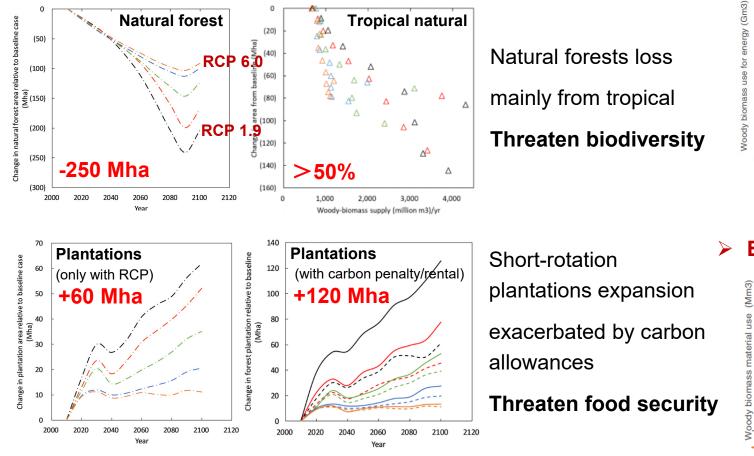

Updated: April 15, 2021 08:59 China Daily =

From plants and wood, to crops and animal droppings, all of these examples of organic waste could soon become important energy sources to heat homes and fuel cars.

China is developing biomass power generation from agriculture and forestry sectors

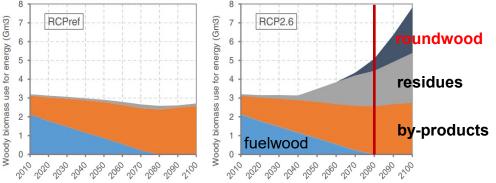


There is a strong possibility that BECCS will be part of the solution to reach 1.5°C target



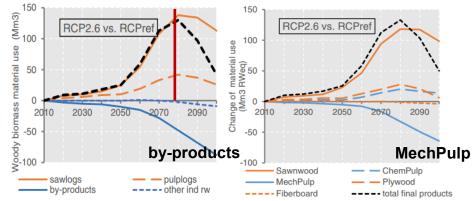

BE with CCS is needed in China to achieve carbon neutrality

(Gustavsson et al., 2017, Renew. Sust. Energ. Rev.; Fajardy et al., 2021, Global Environ. Chang.; Yu et al., 2022, Bulletin of Chinese Academy of Sciences)


#### Timber for BE threatens food security and competes with woody materials

Effects of increasing woody BE



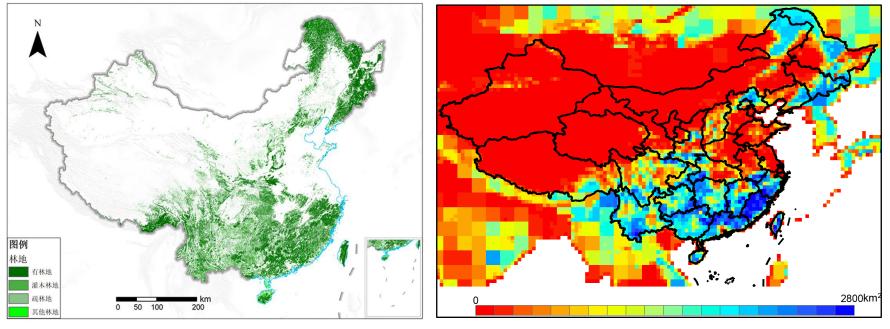

(Favero et al., 2020, Science Advances; Lauri et al., 2017, Forest Policy Econ.)

#### Biomass for energy



Woody BE comes from by-products, residues and roundwood

#### Biomass for material

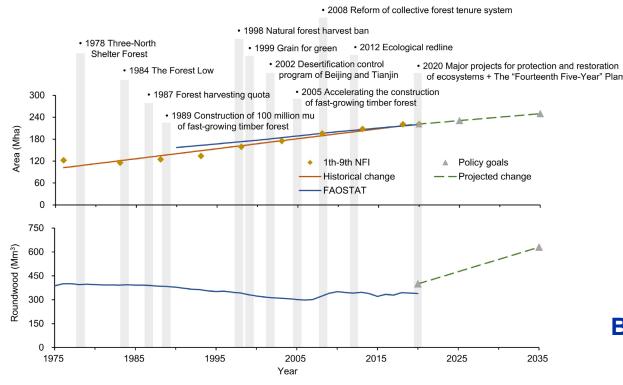



#### Competition by-products and roundwood

#### **GLOBIOM-China MODEL**

-GLOBIOM-China model (difference to global version):

- 1) Higher resolution for China (200x200km -> 50x50km)
- 2) New land-use data (GLC2015+NaturMap+FRA2020)
- 3) China forest policies: 1 natural forest harvest ban, 2 afforestation plan
- 4) Separate bioenergy demand function for China
- 5) Bilateral trade in 2000-2020 based on FAOSTAT trade flow database
- 6) FAOSTAT production data corrected to match China material balance




CHN F&G bureau

**GLOBIOM-China** 

□ Historical trajectory

#### Forest area and roundwood production



#### Materials demand

 <u>2000-2020</u>: based on FAOSTAT, Sawnwood, plywood and fiberboard production in FAOSTAT data is decreased, 50% to match better on raw material use

#### Comparison of FAOSTAT forestry data with China Forestry Administration data

| GLOBIOM<br>variable | FAOSTAT products                           | FAOS       | STAT    | China Forestry<br>Administration | Difference<br>value | Difference            | Unit            |
|---------------------|--------------------------------------------|------------|---------|----------------------------------|---------------------|-----------------------|-----------------|
|                     | -                                          | Production | Summary | Production                       | value               | percentage            |                 |
| SW Biomass          | Sawlogs and veneer logs, coniferous        | 1488.97    | 9001.58 | 7775.87                          | 1225 71             | 1225.71 <b>15.76%</b> | $10^4m^3$       |
| 5 W_DIOIIIass       | Sawlogs and veneer logs,<br>non-coniferous | 7512.61    | 9001.58 | ///5.8/                          | 1225.71             |                       | $10^4m^3$       |
| Plywood             | Plywood                                    | 6816.50    | 6816.50 | 16381.78                         | -9565.28            | -58.39%               | $10^{4}  m^{3}$ |

#### Calculation of the conversion ratio of sawnwood and plywood

| Year | Sawlogs and venner logs<br>(production+net import)<br>(10 <sup>4</sup> m <sup>3</sup> ) | Log equivalent<br>of sawnwood<br>(10 <sup>4</sup> m <sup>3</sup> ) | Log equivalent<br>of veneer<br>(10 <sup>4</sup> m <sup>3</sup> ) | Log equivalent<br>of plywood<br>(10 <sup>4</sup> m <sup>3</sup> ) | Conversion<br>ratio |
|------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|---------------------|
| 2020 | 156337.31                                                                               | 109252.91                                                          | 6830.25                                                          | 171160.00                                                         | 1.88                |
| 2019 | 157334.86                                                                               | 117312.91                                                          | 6830.25                                                          | 159660.00                                                         | 1.84                |
| 2018 | 156465.56                                                                               | 117312.91                                                          | 7580.25                                                          | 159660.00                                                         | 1.86                |
| 2017 | 141981.73                                                                               | 111852.91                                                          | 7580.25                                                          | 159160.00                                                         | 2.02                |
| 2016 | 141665.87                                                                               | 100422.01                                                          | 7582.25                                                          | 170412.50                                                         | 2.02                |
| 2015 | 129853.24                                                                               | 96663.71                                                           | 7582.25                                                          | 163162.50                                                         | 2.13                |
| 2014 | 130312.66                                                                               | 88949.51                                                           | 7585.00                                                          | 170412.50                                                         | 2.11                |

#### **Bioenergy demand**

• **<u>2000-2020</u>**: based on IEA, agricultural residues and waste share 60%, and woody biomass share 40%

### □ Scenarios

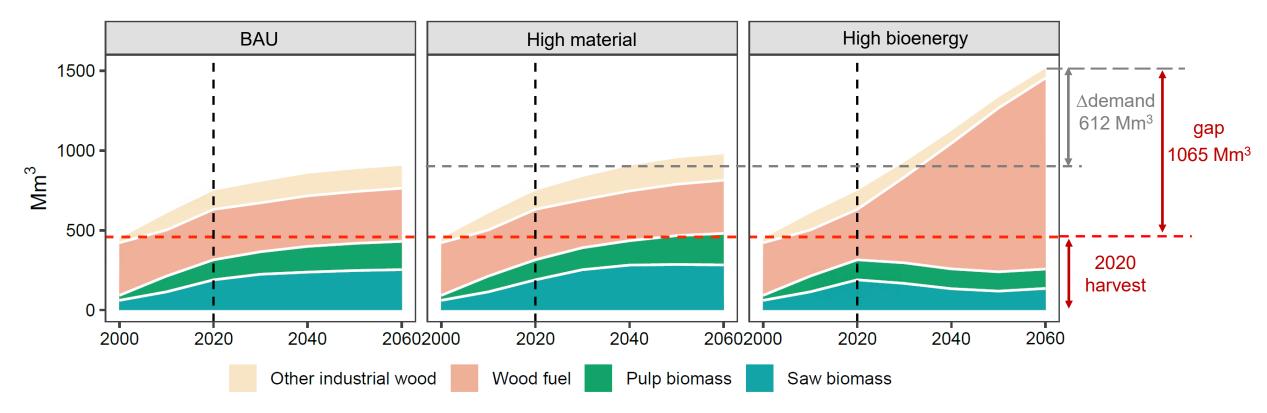
| Conneria | Description                                                 |                             |                                  |  |  |  |
|----------|-------------------------------------------------------------|-----------------------------|----------------------------------|--|--|--|
| Scenario | Future demand                                               | Harvest potential           | pellet import / plantations      |  |  |  |
| BAU      | Baseline: SSP2 + afforestation + natural forest harvest ban |                             |                                  |  |  |  |
| НВС      |                                                             | low harvest potential       | no pellet import but plantations |  |  |  |
| HB_L     |                                                             | low harvest potential       |                                  |  |  |  |
| нв_м     | High bioenergy                                              | medium harvest<br>potential | no pellet import                 |  |  |  |
| НВ_Н     |                                                             | High harvest potential      |                                  |  |  |  |
| HB_L_P   |                                                             | low harvest potential       |                                  |  |  |  |
| HB_M_P   |                                                             | medium harvest<br>potential | Pellet import                    |  |  |  |
| HB_H_P   |                                                             | High harvest potential      | _                                |  |  |  |
| HM_L     |                                                             | low harvest potential       |                                  |  |  |  |
| HM_M     |                                                             | medium harvest<br>potential | no pellet import                 |  |  |  |
| НМ_Н     | Ligh Matarial                                               | High harvest potential      |                                  |  |  |  |
| HM_L_P   | High Material                                               | low harvest potential       |                                  |  |  |  |
| HM_M_P   |                                                             | medium harvest<br>potential | Pellet import                    |  |  |  |
| HM_H_P   | 1                                                           | High harvest potential      |                                  |  |  |  |

#### **Bioenergy demand**



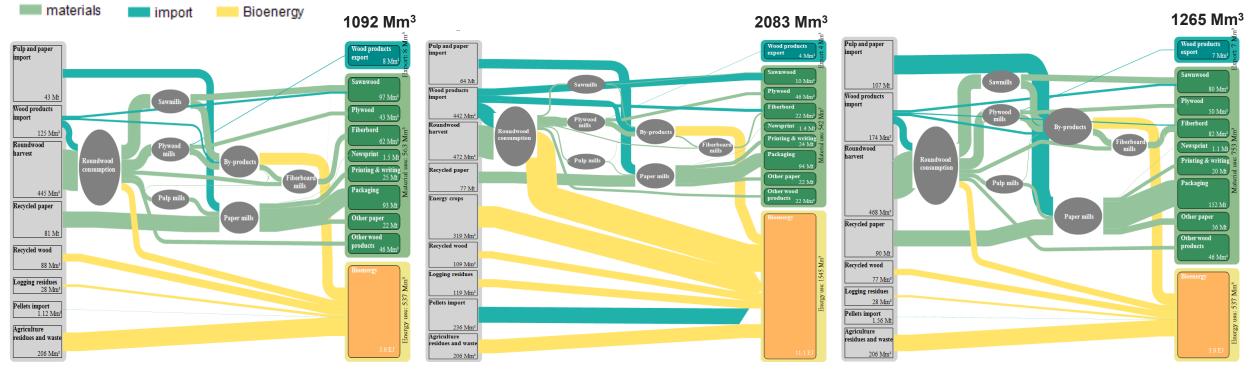
- > BAU: no additional BE demand
  - High bioenergy: China share 9.3% of RCP1.9 global BE demand

#### **Material demand**




- BAU: based on SSP2 POP and GDP development
- High materials: demand is based on SSP5

#### **Harvest potential**


|                                                   | Area | a (after 2020)           | Yield/                | Harvest potential/  |  |
|---------------------------------------------------|------|--------------------------|-----------------------|---------------------|--|
| Scenarios Natural forests<br>(harvest ban) Plante |      | Planted forests          | m <sup>3</sup> /ha/yr | Mm <sup>3</sup> /yr |  |
| Low                                               | 140  | 80 (previous) + 13 (new) | 5                     | 465                 |  |
| Medium                                            | 140  | 80 (previous) + 13 (new) | 6.67                  | 620                 |  |
| High                                              | 140  | 80 (previous) + 13 (new) | 10                    | 930                 |  |

Woody biomass demand

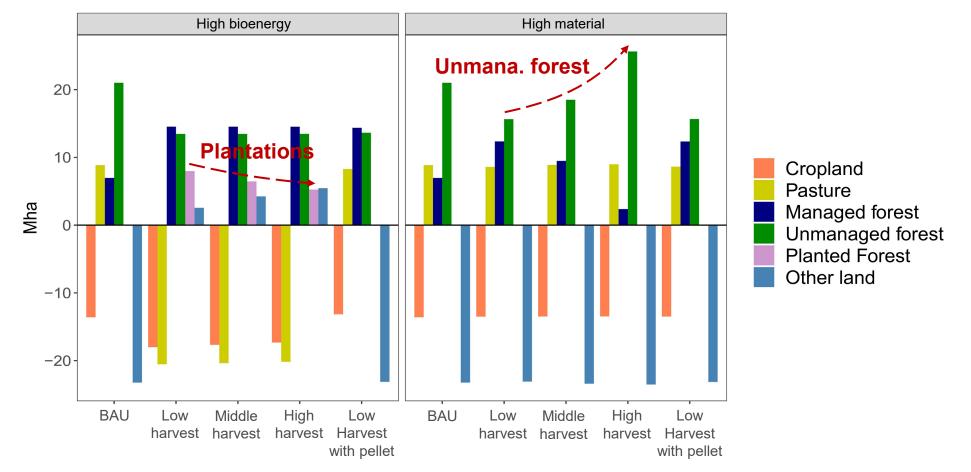


- Biomass demand increases by 73 Mm<sup>3</sup> and 612 Mm<sup>3</sup> in the high material and high bioenergy scenarios, resulting in timber gap of 526 Mm<sup>3</sup> and 1065 Mm<sup>3</sup>, respectively, 2060
- > Biomass originally used for material is converted to energy use in order to meet climate goals

Woody biomass flows



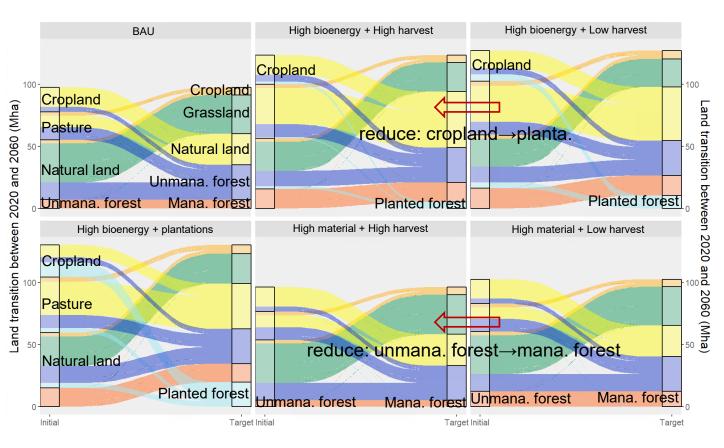
BAU


High bioenergy

High material

- High BE demand and high materials demand lead to 1008 Mm<sup>3</sup> and 190 Mm<sup>3</sup> increase in biomass for energy and materials, respectively
- > Biomass for energy and materials use competes with roundwood and residues

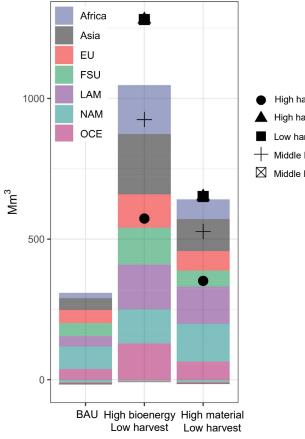
Introduction Methods Results Conclusion


□ Land use change

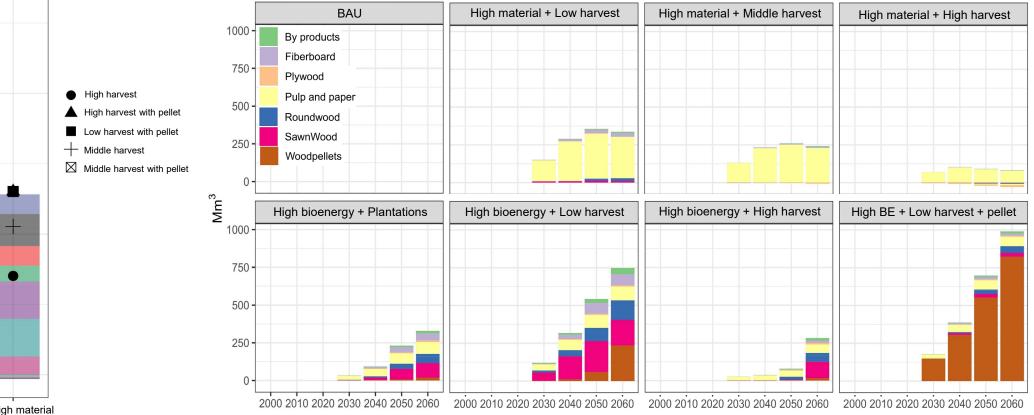


> Increased logging potential could meet future material demand and avoid reduction of unmanaged forests

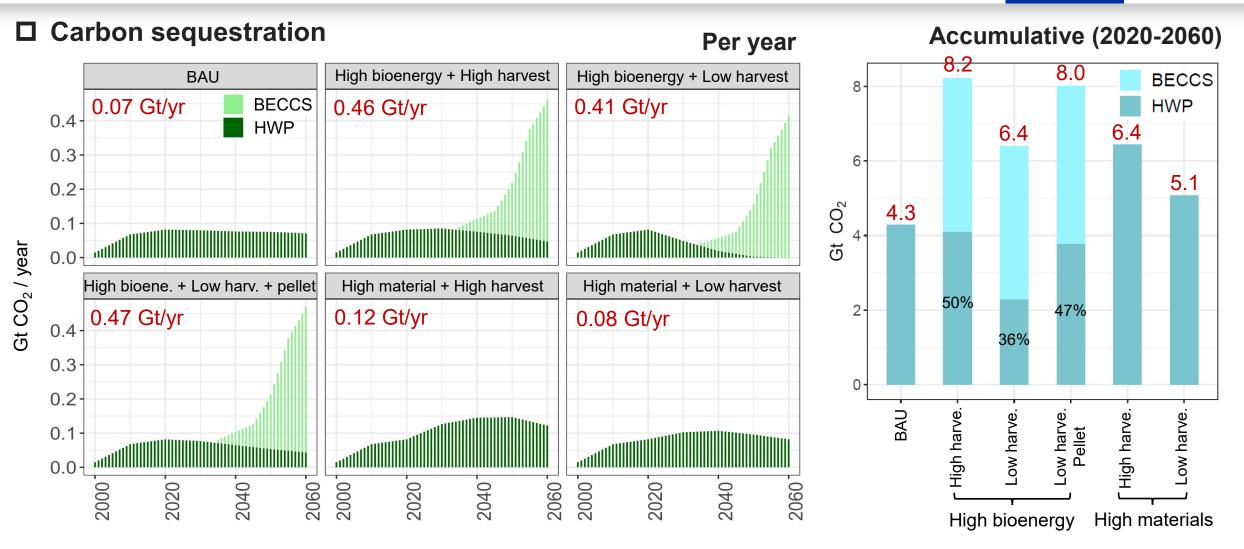
> Increased logging potential doesn't meet climate goals, requires plantation expansion or pellet import


### □ Land transition




- Afforestation land mainly derived from other natural land and pasture
- Plantations can lead to the occupation of cropland
- Increased logging potential can reduce the gross land use change and contribute to food security and biodiversity

Conclusion


#### □ International trade



#### Relative change to BAU



- > Timber imports mainly from Latin America, South-East Asia, Africa and North America
- > Imported products are dominated by pulp when demand for materials increases
- Timber imports to meet climate goals are dominated by roundwood and sawnwood



Increased logging could store an additional 0.04-0.05 Gt CO<sub>2</sub> per year, and totally store 6.4-8.2 Gt CO<sub>2</sub>

> HWP accounts for 36-50% of the total carbon sequestration under high bioenergy scenarios

## **Conclusion**

- China's demand for woody biomass will reach 913-1524 Mm<sup>3</sup> by 2060, with a gap of 526-1065 Mm<sup>3</sup>
- Woody biomass for energy would compete with material production for residues and roundwood
- Increased harvesting potential could avoid the loss of unmanaged forests, reduce expansions of plantations on cropland and decline carbon leakage
- A 2-fold harvest could result in an additional 1.3-1.8 Gt CO<sub>2</sub> sequestration, and HWP accounts for 36-50% of the total carbon sequestration