
1. Introduction

2. Data

4. Trajectories

Cutoff Lows • Detached from troughs
• Accompanied by cold air mass

A Case in July 2021 (Europe)
• A cutoff low (hereafter, C1) 

caused severe rainfall 
• 200+ people dead
• Merger with another cutoff 

low (hereafter, C2)
à Maintenance of C1?

The main aims of the present study are to discuss:
• the relative contribution of the merger in the 

maintenance of C1;
• the role of diabatic PV modification during the 

merger (Few studies have not investigated this aspect yet) .
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Fig. 1. PV (Potential Vorticity) on 330 K 
isentropic surface at 0600 UTC 12 July 
2021. ERA5 is used for this figure.
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Fig. 2. Lifetime & behaviour of C1 & C2 
based on 330 K isentropic surface. 

• Δ" = 0.25˚ & Δ# = 1 [h]
• Used in §3

WRF-ARW v.4.4 • Δ" = 20 [km] & Δ# = 60 [s]
• Used in §4 & 5

Initial Time 0000 UTC 10 July
Domain Single

Initial & Boundary ERA5 (Hersbach et al. 2020)
Microphysics WSM6 (Hong and Lim 2006)

Cumulus Grell-Freitas (Grell & Freitas 2014)
Radiation RRTMG (Iacono et al. 2008)

Planetary Boundary Layer MYNN 2.5 (Nakanishi & Niino 2006)
Land Surface Noah land-surface model

(Hersbach et al. 2020)

Table 1. Calculation settings with WRF in the present study.

Fig. 3. (black) A 
domain for the 
calculation, and 
(red) 2 PVU 
isoline at 325 K 
at 0000 UTC 11 
July 2021.

3. EKE Budget Analysis
EKE (Eddy Kinetic Energy) Budget Analysis
• To confirm the inflow from C2
• Analyze each component of EKE based on Eq. (1):

(Orlanski & Katzfey 1991; Chang 2000)
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[rhs1] KFC [2] AFC

[9] Residual

[4] Barotropic Term (Reynolds Stress)

[3] Baroclinic Term

[5‒8] Vertical Flux Convergence of Energy

• bar: JJA 2021 mean; prime: eddy (defined as deviation)
• subscript “3”: 3D; vector without subscripts: 2D
• !!: EKE; ""! : eddy ageostrophic wind; #: geopotential;           
$: omega; %: specific volume
• ⋅ : mean in V (100‒900 hPa); ⋅ : mean in S (within 

1,000 km from the center of C1)
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Fig. 4. Temporal evolution of (black line) EKE averaged 
in V and (color line) right-hand terms of Eq. (1). EKE 
(rhs1‒9) is shown in the left (right) vertical axis.

Fig. 5. (a) (color) KFC, (cyan contour)  (100, 
300, ..., 1100 m2 s−2), and (vector) "!! averaged 
over 100‒900 hPa. (hatch) PV330 > 2 PVU. 
(b) Cross sections along the black dashed line in 
(a). (color) PV, (green & black contour) ', (cyan 
contour)  (the same value as (a)), and (red & 
blue contour) KFC (±0.100, ±0.075, ±0.050, & 
±0.025 m2 s−3; red shows positive).

• The EKE maintenance: 11‒13 July
o Although AFC (Ageostrophic Flux Convergence) is 

dominant at first, the later KFC (EKE Flux Convergence) 
dominance coincides with the merger.

Fig. 4

• C2 is suggested to be an energetic source.Fig. 5
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Fig. 6. (dots) Parcels and (color) parcelsʼ PV. Black (gray) contours show PV = 2 PVU at 345 (325) K.
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It is suggested that C2 
is an energetic source 
from the Lagrangian 
viewpoint.

Inflow route:
 NW à S à NE

N = 17916

N = 26097
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5. Diabatic Processes
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The Material Evolution of PV

• (: density; ): absolute vorticity; 
': potential temperature;           
*: nonconservative forces

• '̇ ≡ D PV /Dt
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• Estimate each diabatic term as PV tendency (PVT) 
along the forward trajectories (§4)

(Hoskins et al. 1985)

• The upper parcels (~350 K)
o obtain PV    due to longwave 

radiation
• The lower parcels (~330 K)
o move into C1 quasi-adiabatically

Diabatic Heating Forcing

Fig. 7 (←).
(color) PVT by radiation and (black dot) 
parcels. Lime green (yellow) contours 
show 2 (8) PVU.
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Fig. 8 (→).
PVT of upper (~350 K) & lower (~330 
K) parcel groups (PG). Color line 
(shading) shows the median (12.5‒87.5 
%-ile). Symbols indicate the time when 
the proportion of parcels that penetrate 
S first exceeds 25% (Y), 50% (+), & 75% 
(×).

upper layer (~350 K)

lower layer (~330 K)

(Portmann et al. 2018)

PV    due to Longwave Radiation

Convection is spatially limited.

■ Summary: a schematic of the merger process
• We confirm that the 

merger with C2 maintains 
the intensity of C1.

• We suggest different 
diabatic PV modification 
mechanism depending on 
the vertical layers during 
the merger.
o The upper layer PVT+ 

enhances the energetic 
inflow? (i.e., positive 
feedback of interaction) 

à future study
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