considering two uncertainties in Basin with multiple dams

Ojiro Furuoka, Hokkaido University
Prof Tomohito Yamada

$$
\begin{aligned}
& \text { Base flow }
\end{aligned}
$$

2. Uncertainty in rainfall observations

Japan,Kinugawa basin,MLIT

the 2015 Kanto Tohoku Heavy Rainfall,Nikkei x tech

Histograms of Differences between XRAIN Rain Gauge and AMeBAS Rain Gauge in the Kinugawa River Basin of the 2015 Kanto Tohoku Heavy Rainfall and the 2019 East Japan Typhoon
The accumulation of observational data has made it possible to quantify the range of uncertainty. Consider uncertainties due to limitations of observations in the rainfall information to be input

3.Uncertainty in soil wetness 4

Total rainfall loss converges to a constant value as total precipitation increases.
Accumulation of observation data
of heavy rainfall cases in recent
decades

The range of uncertainty in converging values can now be quantified.

Rainfall is retained by the soil and direct runoff is reduced.
There is uncertainty in direct runoff not only from observational uncertainty, but also from the wetness of the soil immediately prior to heavy rainfall

Hachisu dam (Japan, Mie prefecture) June to November of 2002

Not contributing
Direct runoff

What do I want to do here?
I want to analyze why total rainfall loss is different even if total rainfall is the same amount.

I extract rainfall event with a total rainfall amount of 400 or more and find out what happened to the previous rainfall event.

Hachisu dam (Japan, Mie prefecture) $400<=$ Total rainfall <= 500
Runoff characteristics below the fitting curve have rained in previous rainfall events

August
8~12,2003

September
19~24,2011

September

16~21,2012

August 7~13,2023 August
$14 \sim 18,202$

Hachisu dam (Japan, Mie prefecture)
500 <= Total rainfall <= 600
Runoff from July 4th to 21 st, 2015 shows smaller values of lost rainfall than that in the fitting curve, but there was no significant rainfall in the previous rainfall event

Hachisu dam (Japan, Mie prefecture) 600 <= Total rainfall <= 800

4.A method for mathematically evaluating

 the range of uncertainty

The phenomenon of Brownian motion was theorized, and it was shown that molecules exist.

Einstein (1773~1858)
He discovered that the movement of microparticles in water, which was thought to be biological, is a physical phenomenon.

Langevin equation

$$
m \frac{d v}{d t} \stackrel{\text { Average force }}{=-\mu \nu(t)+f(t)} \underset{\text { Randam force }}{ }
$$

m :mass, v :velocity, μ :coefficient
Ito stochastic differential equation $d x(t)=\mu(x, t) d t+\sum^{n} \sigma_{j}(x, t) d w_{j}$

Fokker-Planck equation

$$
\frac{\partial p(x, t)}{\partial t}=-\frac{\partial(\mu(x, t) p(x, t))}{\partial t}+\frac{1}{2} \frac{\partial^{2}\left(\sum_{j=1}^{n} \sigma_{j}^{2}(x, t) p(x, t)\right)}{\partial x^{2}}
$$

Previous rainfall event

The effective rainfall term can be decomposed as a linear sum of the effective rainfall from observations, the uncertainty in soil wetness, and the uncertainty in observations

$$
r_{e}=\bar{r}_{e}+r^{\prime}+r^{\prime \prime}
$$

$\left(\sigma_{i}, T_{i}, d w\right.$ is standard
$\frac{d q_{*}}{d t}=\alpha q_{*}^{\beta}\left(r_{e}-q_{*}\right) \longrightarrow d q_{*}=\alpha q_{*}^{\beta}\left(\bar{r}_{e}-q_{*}\right) d t$ devitation, time constant (0,dt)normal distribution) $+\alpha q_{*}^{\beta} \sigma_{1} \sqrt{T_{w}} d w+\alpha q_{*}^{\beta} \sigma_{2} \sqrt{T_{w}} d w$
Two uncertainties are introduced into the traditional deterministic basic equation

6.Stochastic rainfall runoff process

Deterministic method \rightarrow Method considering uncertainty

$$
\frac{d q_{*}}{d t}=\alpha q_{*}^{\beta}\left(r_{e}-q_{*}\right)
$$

α, β :parameter $q *$ runoff r_{e} :effective rainfall

$$
\begin{aligned}
\frac{\partial p\left(q_{*}, t\right)}{\partial t} & =-\frac{\partial\left(a_{0} q_{*}^{\beta}\left(r_{e}-q_{*}\right) p\left(q_{*}, t\right)\right)}{\partial t} \\
& +\frac{1}{2} \frac{\partial^{2}\left(\left(a_{0} q_{*}^{\beta} \sigma_{1}\left(q_{*}, t\right)\right)^{2} p\left(q_{*}, t\right)\right)}{\partial q_{*}^{2}}+\frac{1}{2} \frac{\partial^{2}\left(\left(a_{0} q_{*}^{\beta} \sigma_{2}\left(q_{*}, t\right)\right)^{2} p\left(q_{*}, t\right)\right)}{\partial q_{*}^{2}}
\end{aligned}
$$

Probability Density Function of Direct Runoff Height p(q,t)

Now that the uncertainty of rainfall information become known, it is possible to evaluate runoff heights taking the uncertainty into account.

