

Hypothetical measures on high-level radioactive waste

from the perspective of extended interim storage and final disposal

Results from a research project

<u>G. Bracke</u>, L. Maerten, C. Borkel (BASE)

Guido.bracke@base.bund.de

Site Selection Procedure - Germany

- Started in 2017
- Site selection will take several decades, followed by construction, operation, ...
- Licences for interim storage were granted for 40 years (first to expire in 2034)
- New applications necessary for interim storage

Waste Inventory

Spent Fuel

Vitrified waste

Waste from Research and Test Reactors

Dual Purpose Casks

Spent Fuel

Vitrified waste

Hypothetical Measures?

Interim Storage	Conditioning?	Extended Interim Storage	Conditioning!	Repository
-----------------	---------------	--------------------------	---------------	------------

Interim Storage

- Currently, no evidence for systematic failures for up to 100 years (e.g. cladding)

Federal Office for the Safety of Nuclear Waste Management

Page 6 EGU24 16/04/2024 Guido Bracke, BASE Hypothetical measures on high-level radioactive waste

• Conceivable Scenarios: Impairment of its safety by aging (e.g due to temperature, radiation and other effects of radioactive decay)

Disposal

Mobilisation and mobility of radionuclides

Impact of interim storage and repository concept

Near field

Method:

- Reference concepts with **boundary conditions**:
 - **Temperature:** Inventory (heat generation), loading of containers, distance, features of host rock and geotechnical barriers
 - **Fluid:** composition and availability

 Taken from: Grambow et al., MICADO - Model Uncertainty for the Mechanism of Dissolution

 of Spent Fuel in Nuclear Waste Repository, ISBN 978-92-79-17652-4, doi 10.2777/25846

Federal Office for the Safety of Nuclear Waste Management

Reference Disposal Concepts

Salt (Former German) Clay (Swiss)

- POLLUX® cask
- $T_{0,cask} = 200 \ ^{\circ}C$

- Steel cask
- Bentonite (Mx-80)
- T_{0.cask} = 150 °C

Crystalline (Swedish)

- KBS-3 (iron and copper cask)
- Bentonite (Mx-80)

Assessment (Interim Storage)

	Hypothetical Measure	Inventory	Radionuclide mobility	Radiation protection	Handling
1	Thermal treatment	Vitrified rad. waste	lower	Possibly higher (collective) dose	no impact
2	Earlier removal from interim storage	All	No effect	Higher dose rate/ higher (collective) dose	identical
3	Heating	Spent Fuel (LWR)	No effect	Possibly higher (collective) dose	identical
4	Gentle procedures	Spent Fuel (LWR)	No effect	Possibly higher (collective) dose	identical

Assessment (Conditioning, repository)

	Hypothetical Measure	Inventory	Radionuclide mobility	Radiation protection	Handling
1	Ealier removal / conditioning	Vitrified rad. waste, spent fuel (LWR, WWER)	No effect / possibly earlier	Higher dose rate / Possibly higher (collective) dose	identical
2	Overpack, capsulation, welding	All	No effect / delayed	Possibly higher (collective) dose	restored
4	Thermal treatment	Vitrified rad. waste	Lower	Possibly higher (collective) dose	no impact
5	Heating / cooling	Spent fuel (LWR)	No effect	Possibly higher (collective) dose	restored
6	Interim storage DPC as disposal container	Spent fuel (LWR, RR)	No effect/ possibly delayed	Possibly lower (collective) dose	minimized

Summary and Results

- Proposal of hypothetical measures for extended interim storage and repository concepts
- Assessment of mobilisation of radionuclides in final repository
- > Hypothetical measures could ensure or restore handling
- Most measures would increase the collective radiation dose
- Low impact on radionuclide mobilisation and mobility in repositories

Conclusions

- No mandatory measures regarding extended interim storage
- Measures depend on waste acceptance criteria of repository concepts

Federal Office for the Safety of Nuclear Waste Management

Images

www.posiva.fi (in: RESEARCH REPORT VTT-R-00076-22, Waste Management of Small Modular Nuclear Reactors in Finland, Authors: Keto, P. (ed.), Juutilainen, P., Schatz, T., Naumer, S. & Häkkinen, S., 2022)

www.cea.fr (Commissariat à l'énergie atomique, A Nuclear Energy Division, Monograph, Nuclear Waste Conditioning, ISBN 978-2-281-11380-8)

<u>www.frm2.tum.de</u> (Rundherum sicher! Informationen für die Bevölkerung nach § 106 Strahlenschutzverordnung Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Campus Garching)

https://www.fz-juelich.de/de (Berichte der Kernforschungsanlage Jülich GmbH, Jül-Conf-32, 2. überarbeitete Auflage, Februar 1984, ISSN 0344 - 5798)

www.vkta.de (https://oiger.de/2020/04/26/tschernobyl-weckruf-fuer-den-ostblock/174628)

https://www.ga.com/triga/fuels

www.gns.de

Grambow et al., MICADO - Model Uncertainty for the Mechanism of Dissolution of Spent Fuel in Nuclear Waste Repository, ISBN 978-92-79-17652-4, DOI 10.2777/25846

www.mineralienatlas.de

www.geodienst.de

www.natursteine.de