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Observed (and projected) climate change in the Alps

Summer (MJJASO) temperature anomalies
averaged over various alpine stations (>1500m)

nomaly [°C]

Temperature a

High altitudes (and Switzerland as a whole) warm more
than twice as fast as globe, including more frequent
and intense heatwaves
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Observed (and projected) climate change in the Alps

Summer (MJJASO) temperature anomalies Highest measured zero-degree lines
averaged over various alpine stations (>1500m) in Switzerland
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High altitudes (and Switzerland as a whole) warm more
than twice as fast as globe, including more frequent
and intense heatwaves

Zero-degree line increases
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Observed (and projected) climate change in the Alps

Summer (MJJASO) temperature anomalies Highest measured zero-degree lines
averaged over various alpine stations (>1500m) in Switzerland
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High altitudes (and Switzerland as a whole) warm more
Swiss mountain peak (Weissfluhjoch, GR, 2540m)

than twice as fast as globe, including more frequent
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Observed (and projected) climate change in the Alps

Summer (MJJASO) temperature anomalies Highest measured zero-degree lines
averaged over various alpine stations (>1500m) in Switzerland
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First snow-free day of the year at exemplary

High altitudes (and Switzerland as a whole) warm more
Swiss mountain peak (Weissfluhjoch, GR, 2540m)

than twice as fast as globe, including more frequent

and intense heatwaves
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Zero-degree line increases
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Permafrost in the Swiss Alps and at our PERMOS study site Schilthorn

Approximately 5% of Switzerland’s area is covered by permafrost,
which is monitored by PERMOS at about 27 borehole sites
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Permafrost in the Swiss Alps and at our PERMOS study site Schilthorn

Approximately 5% of Switzerland’s area is covered by permafrost, Borehole(s) at Schilthorn (BE, 2970m)
which is monitored by PERMOS at about 27 borehole sites with largely ice-poor permafrost
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Schilthorn, a rapidly (!) changing mountain

Atmospheric 2m temperature (ERAS5, top) and Schilthorn ground
temperature (PERMOS, bottom): absolute values
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Strong trend particularly in last 10
years: rapid thickening of active layer
and subsidence of permafrost table
(borehole is not deep enough anymore!)

Long-term changes in annual /
summer mean temperature (and
potentially also in snow cover) are likely
the first-order drivers of this
permafrost thawing



Schilthorn, a rapidly (!) changing mountain

Atmospheric 2m temperature (ERAS5, top) and Schilthorn ground
temperature (PERMOS, bottom): standardized anomalies, 2014
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Schilthorn, a rapidly (!) changing mountain
Atmospheric 2m temperature (ERAS5, top) and Schilthorn ground

of ground temperature evolution

- Research question: role of
< subseasonal to seasonal
atmospheric temperature
variability — in particular of multi-
weekly summer heatwaves — for

temperature (PERMOS, bottom): standardized anomalies, 2014
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ground temperature / permafrost
(and its changes)?
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temperature (PERMOS, bottom): standardized anomalies, 2022
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Role of atmospheric timescales for ground temperature (Schilthorn)
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Role of atmospheric timescales for ground temperature (Schilthorn)
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Role of atmospheric timescales for ground temperature (Schilthorn)
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Well-known quasi-
linear relationship:
the longer the
atmospheric
timescale, the
larger the
impacted ground
depth - ground
temperature driven
by heat
conduction
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Role of atmospheric timescales for ground temperature (Schilthorn)
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Role of accumulated atmospheric summer heat for “total ground heat”

Seasonally accumulated atmospheric
heat over “snow-free period”

Depth [-m]

Simple definition of “snow-free
period”: period between first and last
time when ground temperature at
highest sensor (0.2m depth) is equal
to or larger than 0°C

ETHzirich
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Role of accumulated atmospheric summer heat for “total ground heat”

Seasonally accumulated atmospheric
heat over “snow-free period”

Depth [-m]

Simple definition of “snow-free
period”: period between first and last
time when ground temperature at
highest sensor (0.2m depth) is equal
to or larger than 0°C
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Role of accumulated atmospheric summer heat for active layer thickness
(ALT) / permafrost table

Schilthorn (5198) | 1998 - 2022 | Absolute
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Active layer thickness [m]
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Accumulated 2m temperature
over snow-free period [°C]

Much weaker linear relationship: ALT (and its
changes) not just driven by atmospheric heat
available over snow-free period, but rather a result of
longer-term (and probably non-linear) processes

ETH:urich 17



Role of accumulated atmospheric summer heat for active layer thickness
(ALT) / permafrost table

Much weaker linear relationship: ALT (and its
changes) not just driven by atmospheric heat
available over snow-free period, but rather a result of
longer-term (and probably non-linear) processes

ETHzirich

Active layer thickness [m]
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What about other PERMOS sites?

Schilthorn Stockhorn Les Attelas Schafberg
(BE |ce poor) (VS, 3410m, ice-poor) (VS 2661m |ce rlch) (GR 2732m ice- r|ch)
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Very different behavior from PERMOS site to PERMOS site due to their very different ground characteristics:
ice content, mountain/rock type, snow cover characteristics,
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Role of subseasonal atmospheric temperature variability for “total ground
heat” at Schilthorn? > SNOWPACK simulations for 2015/2016

1D SNOWPACK model (Lehning et al., 1999) control
simulation based on atmospheric and snow measurements
from meteorological station (1 June 2015 — 30 April 2016)
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“Snow-free period”: 4202 4 6 8 10012
1 Jul _ 30 Sep 2015 Temperature [°C]
L aa
0 1 5 20 40
SSSSSS ight [cm]
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Role of subseasonal atmospheric temperature variability for “total ground
heat” at Schilthorn? > SNOWPACK simulations for 2015/2016

1D SNOWPACK model (Lehning et al., 1999) control
simulation based on atmospheric and snow measurements
from meteorological station (1 June 2015 — 30 April 2016)

e

DR 11 T

PERMOS measurements for verification

“Snow-free period”:
1 Jul - 30 Sep 2015 rel

ETH:urich 21



Role of subseasonal atmospheric temperature variability for “total ground
heat” at Schilthorn? > SNOWPACK simulations for 2015/2016

1D SNOWPACK model (Lehning et al., 1999) control
simulation based on atmospheric and snow measurements
from meteorological station (1 June 2015 — 30 April 2016)

e

PERMOS measurements for verification
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SNOWPACK does a reasonable job in simulating
ground temperature evolution, despite potentially
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temporal extent of ground heat reservoir) - use it for
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Setup of idealized SNOWPACK sensitivity simulations for summer 2015

Control

“Snow-free period”:
1 Jul — 30 Sep 2015

Approach: Simulate summer 2015 ground temperatures
multiple times with same total atmospheric
heat/temperature (and precipitation, radiation, ...) input
over snow-free period, but with different subseasonal
variability > How does this affect (previously introduced)
“total ground heat”?

ETHzirich
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Setup of idealized SNOWPACK sensitivity simulations for summer 2015

Role of daily atmospheric
Control variability (random
reshufﬂlng of days)
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Approach: Simulate summer 2015 ground temperatures
multiple times with same total atmospheric
heat/temperature (and precipitation, radiation, ...) input
over snow-free period, but with different subseasonal
variability > How does this affect (previously introduced)
“total ground heat”?
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Setup of idealized SNOWPACK sensitivity simulations for summer 2015

Role of daily atmospheric Role of monthly
Control variability (random atmospheric variability

reshuffling of days) (reshuffling of months)
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“Snow-free period”:
1 Jul — 30 Sep 2015
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Approach: Simulate summer 2015 ground temperatures
multiple times with same total atmospheric
heat/temperature (and precipitation, radiation, ...) input
over snow-free period, but with different subseasonal

variability > How does this affect (previously introduced)
“total ground heat”?
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Setup of idealized SNOWPACK sensitivity simulations for summer 2015

Control

‘4\ b JH\ .

“Snow-free period”:
1 Jul — 30 Sep 2015

Approach: Simulate summer 2015 ground temperatures
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multiple times with same total atmospheric Ty f“ ‘M ‘”“
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heat/temperature (and precipitation, radiation, ...) input
over snow-free period, but with different subseasonal
variability > How does this affect (previously introduced)

“total ground heat”?
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Role of subseasonal atmospheric temperature variability for “total ground

heat” at Schilthorn in 2015/2016

6
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Role of subseasonal atmospheric temperature variability for “total ground

heat” at Schilthorn in 2015/2016

mmm Control
M Reshuffled days 1
mm Reshuffled days 2
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4 mm Reshuffled months 1 (SJA)
mmm Reshuffled months 2 (AS))
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mmm Reshuffled months 4 (AJS)
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B Increasing daily temperature
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If subseasonal autocorrelations in the atmosphere are broken up (i.e., no multi-weekly heatwaves; reddish bars), total
ground heat decreases (likely because persisting temperature gradients required for deep heat conduction are broken up)
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Role of subseasonal atmospheric temperature variability for “total ground
heat” at Schilthorn in 2015/2016
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If subseasonal autocorrelations in the atmosphere are broken up (i.e., no multi-weekly heatwaves; reddish bars), total
ground heat decreases (likely because persisting temperature gradients required for deep heat conduction are broken up)

Total ground heat increases in all “monthly variability” simulations (blueish bars), but why?
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Role of subseasonal atmospheric temperature variability for “total ground
heat” at Schilthorn in 2015/2016
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If subseasonal autocorrelations in the atmosphere are broken up (i.e., no multi-weekly heatwaves; reddish bars), total
ground heat decreases (likely because persisting temperature gradients required for deep heat conduction are broken up)

Total ground heat increases in all “monthly variability” simulations (blueish bars), but why? - simulations tend to shift
anomalously warm July 2015 later into season and rather cold September 2015 earlier into season - later summer heat
causes larger total ground heat (purplish bars)
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Role of subseasonal atmospheric temperature variability for “total ground
heat” at Schilthorn in 2015/2016
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If subseasonal autocorrelations in the atmosphere are broken up (i.e., no multi-weekly heatwaves; reddish bars), total
ground heat decreases (likely because persisting temperature gradients required for deep heat conduction are broken up)

Total ground heat increases in all “monthly variability” simulations (blueish bars), but why? - simulations tend to shift
anomalously warm July 2015 later into season and rather cold September 2015 earlier into season - later summer heat
causes larger total ground heat (purplish bars)

- Atmospheric heat is more important for total ground heat if it comes in (multi-)weekly waves than in individual days

- Late-summer heatwaves increase total ground heat more

- Early-summer heatwaves are less crucial for total ground heat, likely because heat is “wasted” to melt ice and heat up
melt water first (latent heat of melting, heat capacity of water)
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Some first conclusions for Schilthorn

« Well-known quasi-linear relationship between atmospheric and ground
i temperature: the longer the atmospheric timescale, the larger the impacted

ground depth
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Some first conclusions for Schilthorn

« Well-known quasi-linear relationship between atmospheric and ground
=0 temperature: the longer the atmospheric timescale, the larger the impacted

ground depth

« Total atmospheric summer heat (accumulated over snow-free period) largely
determines total ground heat
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Some first conclusions for Schilthorn
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Well-known quasi-linear relationship between atmospheric and ground
temperature: the longer the atmospheric timescale, the larger the impacted
ground depth

Total atmospheric summer heat (accumulated over snow-free period) largely
determines total ground heat

However, total atmospheric summer heat only partly determines active
layer thickness / depth of permafrost table - longer timescales (i.e., climate
change) and non-linear processes likely needed to explain this
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Some first conclusions for Schilthorn
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Well-known quasi-linear relationship between atmospheric and ground
temperature: the longer the atmospheric timescale, the larger the impacted
ground depth

Total atmospheric summer heat (accumulated over snow-free period) largely
determines total ground heat

However, total atmospheric summer heat only partly determines active
layer thickness / depth of permafrost table - longer timescales (i.e., climate
change) and non-linear processes likely needed to explain this

Subseasonal atmospheric temperature variability matters:

— Atmospheric heat more important for total ground heat if it comes in
(multi-)weekly waves than if it comes in individual days

— Late-summer heatwaves might be more important for total ground heat

than early-summer heatwaves (since early heat is likely “wasted” to melt ice

and heat up melt water first)
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Open questions for future research

* Role of subseasonal to seasonal atmospheric temperature variability for other, for instance more ice-
rich or rock glacier PERMOS sites?
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Open questions for future research

* Role of subseasonal to seasonal atmospheric temperature variability for other, for instance more ice-
rich or rock glacier PERMOS sites?

- Better understanding of role of heatwave timing: Do late-summer heatwaves accelerate long-term
increase of active layer thickness / subsidence of permafrost table? Could late-summer heatwaves
matter more for permafrost-related hazards such as rockfalls?
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Open questions for future research

* Role of subseasonal to seasonal atmospheric temperature variability for other, for instance more ice-
rich or rock glacier PERMOS sites?

- Better understanding of role of heatwave timing: Do late-summer heatwaves accelerate long-term
increase of active layer thickness / subsidence of permafrost table? Could late-summer heatwaves
matter more for permafrost-related hazards such as rockfalls?

« Can we couple the SNOWPACK model to operational subseasonal numerical weather prediction
models (which are able to predict probability for heatwaves up to 3 weeks ahead; e.g., Pyrina &
Domeisen 2023) to operationally predict ground temperature? Could such predictions support
early warning systems for permafrost-related alpine hazards in some way?
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