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SUMMARY

Utilising the strong wind-blown sea spray-lake

conductivity-diatom relationship, this study directly

reconstructed the SHW variability.

The SHW intensity was relatively stronger between
~3000-2300 cal BP and ~1000-0 cal BP; and relatively
weaker between ~2300-1000 cal BP.

= |nvasive rabbit-induced profound lake ecosystem change
is manifested by an increase in sediment input and

within-lake diatom production.

= Rabbit influence overrides wind influence after 1950 CE,

compromising the top section of the core from reliable

wind reconstruction.

Variations in the position and strength of the SHW can profoundly affect climate. Observations document a recent

strengthening and poleward migration of the SHW, which are predicted to'2:3:
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Reconstructing past SHW changes is crucial for understanding the natural variability of the SHW and for constraining

model predictions. Proxy(-ies) reconstructions often rely on their indirect relationship with the SHW, which can be

confounded by other casual factors#>. This study aims to directly reconstruct SHW variability at Macquarie Island

over the past 3000 years and to identify periods of ecosystem shifts related to rabbit introduction.
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Figure 1. A) The modern core belt of the SHW and the location of Macquarie Island (star). B) Macquarie Island showing the prevailing direction of SHW.
White square indicates the location of panel C. C) Lake Tiobunga and local hydrology and topography.
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Figure 3. Stratigraphical diagram of diatom accumulation rates, PC1 score and CONISS cluster analysis-inferred zones at Lake Tiobunga. Zone IIl and IV (pink) respond to rabbit-induced
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through the complement of historical accounts.
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