

EGU

Improving the representation of apparent anelastic attenuation variability in regionalised Ground Motion Models in Europe with a focus in mainland France

Pauline Georges, Sreeram Reddy Kotha and Emmanuel Chaljub Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France

Context of the study and Methods

Ground motion records from shallow earthquakes in Europe

Résif dataset for France - ESM dataset for Europe -1459 earthquakes -2220 stations -34060 records of SA

A partially Non-Ergodic GMM for Euro-Mediterranean region

-> Fixed effect median for all Europe constrained with a linear mixed-effect regression from data

Limits of an ergodic GMM to regionalisation

- Fixed effect predictions are biased against poorly sampled region -Large residual variabilities

Regionalisation of GMM: - site effect - between event variability \rightarrow - locality to locality variability - Apparent anelastic attenuation variability

Regionalisation of apparent anelastic attenuation

Current Regionalisation used in ESHM20: model based on homogeneous tectonic processes region

Crustal properties-based regionalisation: Rayleigh wave group velocities for **Metropolitan France**

Null hypothesis based regionalisation: Regular Grid of size 0.5°*0.5°

A global model with: - Magnitude scaling - Geometrical spreading Apparent anelastic attenuation

- underlying ESHM20
- attenuation regional variability

Regionalisation as a Grid

Contact : pauline.georges@univ-grenoble-alpes.fr

- Purely data-driven - No data means no regional adjustments (e.g. Dinarides) - More gradual variation in attenuation (e.g. Apennines) - Greater data-driven attenuation variation (e.g. France) - AIC criteria: 68 622

Take home message

Seismic hazard studies require precise and accurate (non ergodic) Ground-motion model. Due to heterogeneous geology and tectonics in Europe, regionalisation of predicted Ground-motion is necessary. In this study, we are focusing on creating homogeneous region in term of attenuation. Grid-based regionalisation presents a non a priori regionalisation with good frequency dependance, a better statistical model and smoother variations of attenuation. Those characteristics allow a good model to compare the attenuation with other crustal properties and improve the modelisation of attenuation. However, grid-based regionalisation is strongly datadriven. Without a reliable proxy parameter that explains grid-based attenuation variability, undersampled regions cannot have non-ergodic ground-motion predictions. Therefore, our next step is to evaluate the physical meaning of grid-based regionalisation.

References

Kotha, S.R., Weatherill, G., Bindi, D. et al. A regionally-adaptable ground-motion model for shallow crustal earthquakes in Europe. Bull Earthquake Eng 18, 4091–4125 (2020). https://doi.org/10.1007/s10518-020-00869-1 Mayor, J., Traversa, P., Calvet, M. et al. Tomography of crustal seismic attenuation in Metropolitan France: implications for seismicity analysis. Bull Earthquake Eng 16, 2195–2210

https://doi.org/10.1007/s10518-017-0124-8

Basili R et al. (2019) NEAMTHM18 Documentation: the making of the TSUMAPS-NEAM Tsunami 18 Hazard Model 2018 Mitchell, B. J., L. Cong, and G. Ekström (2008), A continent-wide map of 1-Hz Lg coda Q variation across Eurasia and its relation to lithospheric evolution, J. Geophys. Res., 113, B04303 doi:10.1029/2007JB005065. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

Abstract