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7. Conclusions and perspectives
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o Thermal power plants adaptation to climate change necessitates the characterization of high
impact hazards, among which extremely low river flow. Estimation methods traditionally used
rely on extreme value theory, but recent developments now make it possible to consider another
approach coupling a climate generator and a hydrological model. [1]

o The first study was carried out on a single basin. The purpose of this work is then (i) to extend
this proof of concept to a larger number of basins and (ii) to quantify the sensitivity of the
simulation chain to the parameters of the hydrological model.

o In particular, we explore the added value of piezometry (used or not during the calibration
process) to constrain the asymptotic behavior of the model.

o As already mentioned in previous works, using 
piezometric information during the calibration 
process to improve hydrological model behavior 
is far for being a straightforward task

o Anyway, this first insight allowed us to verify that 
our conceptual model was able to correctly 
represent piezometric information in some 
favorable cases.

o For further work, we intend to use a spatially 
distributed version of the MORDOR model, 
allowing perhaps an even better reconciliation 
between the piezometric data and the internal 
states of the model.

1. Research motivation

A. The MORDOR-SD semi-distributed model [2]

o A spatial discretization based on orographic zones 
o 1 to 24 hours time resolution
o 6 interconnected stores (water storage, snow, ice)
o 8 to 15 free parameters
o Detailed degree-day schemes for snow and ice modelling
o Evapotranspiration as a function of potential evapotranspiration (PET), 
crop coefficient and soil wetness

B. Hydro-climatic data

o Meuse@Chooz catchment (10 173 km²) (EDF power plant) 
o 33 other catchments, from ~80 to 2000 km²
o Precipitation, Temperature: SAFRAN [3] reanalysis
o Potential evapotranspiration: Oudin temperature-based formula [4]

o Discharge:  French national hydrometric data (https://hydro.eaufrance.fr/) 

o Piezometry: French national piezometric data (https://ades.eaufrance.fr/) 
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Use case: Meuse@Chooz watershed (10 173 km²) 1953-2020 period
Method: Exploration of MORDOR parameters + calculation of the empirical 
ten-year annual minimum (Q10)
Results: Calculation of sobol indices (R sensobol package)

Most sensitive parameters:
lkn and evn: controls the dynamics of the deep store N
kr (1-kr ~BFI): controls the percentage of flows going to the deep store
cetp: multiplicative coefficient of evapotranspiration
Some strong interactions between parameter, notably between lkn and evn

Use case: Meuse@Chooz watershed
Method: Extraction of the “Pareto Front” during calibration (R mco package)
Result: n sets of parameters selected at each calibration, i.e. n empirical Q10 estimation to 
be compared to the empirical Q10 reference based on observations (ln3 fit + bootstrap)

(“Pareto Front”: here illustrated in 2 dimensions, in reality 4 or 5 dimensions)

Partial conclusions :
F2 > F1: i.e. criterion KGEi > KGEetg to constrain the model to fit low flows ?
No real improvement while using the “piezometric information” ? 
Fragile results on a single case: extension of experiments to the 33 watersheds (cf. section 6)

Q1000 = 
7.6 -11.4

The results led us to propose a classification of the 33 watersheds based on two indices.
The first index characterizes the importance of the baseflow in the streamflow (BFI = baseflow index). The second index 
characterizes the a priori representativity of the piezometric time series during low flows (cor QMNA/ZMNA, also used in [5]) 
(nb: Meuse@Chooz watershed: BFI = 0.52 & cor QMNA/ZMNA = 0.8 i.e. in class 3)

Class 1 (green): BFI > 0.7: piezometric information is not necessary
Class 2 (red): Cor QMNA/ZMNA < 0.6: piezometric information is not relevant / misleading
Class 3 (orange): BFI < 0.7  & Cor QMNA/ZMNA > 0.6: piezometric information seems to be (sometimes) useful

Q10 = 
14.0

Q10 = 
13.1-16.8

4 different objective functions, with (F1P,F2P) or without (F1,F2) piezometric information 
Rext: correlation between piezometric data and the model deep store level 
KGEetg: KGE on recession subsets (used to constrain the model to fit low flows)
KGEi: KGE on 1/Q (an alternative to constrain the model to fit low flows)

o A multi-objective calibration is implemented, optimizing both (i) flow simulation with 4 criterions
focusing on different streamflow signatures [2] and (ii) eventually one supplementary criterion
base on the affine correspondence between the deep storage level of the model and piezometry

F1 calibration F1P calibration

obs vs mod water level

F1 calibration F1P calibration

obs vs mod water level

F1 F1P F2 F2P

Class 1 14.1 % 14.2 % 12.2 % 14.2 %

Class 2 55.3 % 120.2 % 36.7 % 52.9 %

Class 3 21.4 % 17.1% 20.1 % 20.9 %

MAE error between Q10_mod and Q10_ref

5. Impact on extreme low flow estimation

o We perform the same protocol as in section 4 but for the 33 other watersheds

o For the Meuse@Chooz catchment we perform the framework describe in [1]: we feed our
hydrological model with a large number of temperature and rainfall time series produced by a
stochastic weather generator based on hidden Markov models. This allows us to calculate not
only the ten-year annual minimum (Q10) but also the thousand-year annual minimum (Q1000)

o We find the same results as previously (same sensitivity to the objective function used to
calibrate the model for the Q1000 value). The sensitivity analysis on the ten-year annual
minimum (Q10) therefore seems sufficient at first approach.

Illustration with examples from the 3 different classes 

F1 calibration F1P calibration

obs vs mod water level

Meuse@Chooz watershed (10 173 km²)

Q1000 = 
7.6 -11.4

Q1000 = 
7.6 -11.4
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