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\Vlenu of the day

- 2D Navier-Stokes turbulence on a rotating sphere
- equations used in this talk
- zonal flow structure in 2D turbulence on a rotating system

 Rossby waves
- flow dynamics and Rossby waves
- resonant interaction of Rossby waves

* Nonlinear interactions of Rossby waves and zonal flow formation
- Near-Resonant interactions and zonal flow formation

- Non-Local energy transfer and zonal flow formation

- Summary and Discussion



\Vlenu of the day

- 2D Navier-Stokes turbulence on a rotating sphere
- equations used in this talk
- zonal flow structure in 2D turbulence on a rotating system



2D turbulence on a rotating sphere

The system | am mainly interested in ---
> 2D turbulence on a rotating sphere

Interested in ... :

« the characteristics of the solution of Navier-Stokes equations

- inhomogeneous and anisotropic structure (zonal flow) formation

* in relation to planetary atmospheres and oceans

(foundation of more complicated and realistic mathematical models)

- in relation to plasma physics (Hasegawa-Mima equation) sl o= .00

(Sphere—beta-plane—H-M equation)

| 2D flow
on a
Rotating
sphere




2D Navier-Stokes equations and Vorticity equation on a rotating sphere

2-dimentional Navier-Stokes equations on a rotating sphere:
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2D Navier-Stokes equations and Vorticity equation on a rotating sphere

> Non-dimentionalised vorticity equation on a rotating sphere
(Navier-stokes equations + continuity equation — vorticity equation)

Qﬁ‘ Q= (0,0,0)

0( o 0
I +-J(1:’AC_ ) + 2Q BN = Dissipation"' Forcing
’ advection

(nonlinear) _rotation

(\. 1) : longitude, sin(latitude), €2: rotation rate of the sphere

U(\ . t): stream function, ¢ = V7. VortiCity,/ nonlinear term
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/onal flow formation in 2D turbulence on rotating systems

> Unforced: westward circumpolar flows (Yoden and Yamadal993, Takehiro et al. 2007 )
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velocity
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temporal development of
zonal flows
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> Forced: multiple zonal band structure — a few large zonal flows

Longitudinal
velocity

f e

(Nozawa and Yoden 1997 , Obuse et al. 2010 )

v Zonal structure is formed and
maintained for a very long time

v Mechanism of zonal flow
formation is not yet made clear




2D Navier-Stokes equations and Vorticity equation on a rotating sphere

> Non-dimentionalised vorticity equation on a rotating sphere
(Euler equations + continuity equation — vorticity equation)

Qj‘ Q = (0,0,9)

0( o 0 ‘
I +-J(1:’AC_ ) + 2Q BN = Dissipation"' 1:‘01['(:ing
’ advection

(nonlinear) _rotation i

(\. 1) : longitude, sin(latitude), €2: rotation rate of the sphere

U(\ . t): stream function, ¢ = V7. VortiCity,/ nonlinear term
o 0 [T JAOB OAOB
: V1 — 0,
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Normally Considered, but ignored in this talk /
- (F:) to consider simple case
. (D:) existence of viscosity is not essential for zonal flow formation

Kato (1984),
O. and Yamada
(in preparation)
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/onal flow formation in 2D turbulence on rotating systems

> westward circumpolar zonal flows (Yoden and Yamadal993, Takehiro et al. 2007 )

longitudinal-
velocity temporal development of

zonal flows

westward circumpolar jets
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latitude

0 1 2 3 4

5 3 7 8 9 10 15
- (1)
time

=1.38 -0.75 '] 075 1.38

Lots of study from various points of view

—Mechanism of large-scale zonal flow formation has not been made clear yet.
—|ntroduce our trial by using nonlinear wave interactions




\Vlenu of the day

* Rossby waves /. Often used to discuss the flow dynamics
- flow dynamics and Rossby waves L in rotating system.

- resonant interaction of Rossby waves We also use them today




Rossby waves 2D incompressible flow on a rotating sphere
Q= (0,0,Q)

]

Wave solutions called Rossby waves (specific for rotating systems )

| YA, w) exp( -iwt), Yo'(4 W) = P (4, ) exp(- imA)
. —omQ) : spherical harmonics

wzn(n+1)
-

Dvnamics of Rossby waves determines the temporal variation of flow filed.
(Three-wave)Nonlinear interactions of Rossby waves are important!

We investigate zonal flow formation
from the perspective of three-Rossby-wave nonlinear interaction

Briefly introduce zonal Rossby modes
| > - conditions for three-wave nonlinear interaction
- resonant three-wave nonlinear interaction




Rossby waves in charge of describing zonal flows (zonal Rossby modes)

Y.)(1, ) modes have zonal structures

Energy spectrum (n—m space)
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Development of zonal Rossby modes

Development of zonal flow
= energy accumulation to ¥,Y(4, n) Rossby modes

t=0 energy spectrum E™(n-m space) —10 energy spectrum E™(n-m space)
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X Only low-mid wavenumber space is shown for simplicity
(energy is almost zero at higher wavenumbers)

no =350, y=100, (n>2), Distribution of m: random Correspond to

circumpolar
zonal flows



Rossby waves 2D incompressible flow on a rotating sphere
Q= (0,0.9)

Wave solutions called Rossby waves (specific for rotating systems )

YA, W) exp( - iwt),
] _ —2mf)
@= nn+1)

(4w = B (4, 1) exp(- imA)
: spherical harmonics
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C

b

Dynamics of Rossby waves determines the temporal variation of flow filed.

(Three-wave)Nonlinear interactions of Rossby waves are important!

We investigate energy accumulation to zonal Rossby modes with low n
from the perspective of three-Rossby-wave nonlinear interaction

Briefly introduce

' >

- zonal Rossby modes
- conditions for three-wave nonlinear interaction
- three-wave resonant nonlinear interaction



Nonlinear interaction of three Rossby waves Y,ff;B X
resonant interaction when they satisfy

Necessary
conditions for
three-wave
interaction

Additional
condition for

three-wave resonant interaction of Rossby waves
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three-wave resonant interaction of Rossby waves

> Specifically, in case of Q — w0 (or f— o )flow dynamics is totally governed by 3-

(Rossby) wave resonant nonlinear interactions:

—When Q is infinite, resonant interactions determines flow dynamics
for finite period of time (local existence time)T(Q).)

Theorem 2. Assume that a(0) := {a,(0)},c;2 € £1(Z*). Then
there is a local existence time T; and a local-in-time unique solution
a(t) := {an ()} ez € C([0, ] : £1(Z?)) sarisfying

C
sup [la(D)]| < 2[laol,

T, = \
||ﬂ'0||2 O<t<T

where C is a positive constant independent of B. Moreover if
|la(0)|ls < oo for s = 0, then we have the following pointwise

estimate:

rn(t) = remainder term
Theorem 3. Forall ¢ > O, thereis By > 0s.t ||r(f)]| < € for
0 <t < Trand |B| > Po. where Ty is the local existence time

(see Theorem 2).

T. Yoneda and M.Yamada (2013)
A. Dutrifoy and M. Yamada (in preparation)

mpg
Y, 5

my
Y, )

d

)
three-wave

nonlinear
iInteraction

mc
Yo,

ﬁesonant interactions\
should be the type of
interactions that works
most strongly in the
numerical calculations.

lon—velocity lon—velocity




\Vlenu of the day

* Nonlinear interactions of Rossby waves and zonal flow formation
- Near-Resonant interactions and zonal flow formation
- Non-Local energy transfer and zonal flow formation

What kind of
- Summary and Discussion

are important?



Three-wave nonlinear interactions and zonal flow formation

> westward circumpolar zonal flows

longitudinal-
velocity

A

(Yoden and Yamadal1993, Takehiro et al. 2007 )

temporal development of
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What kind of three-Rossby-wave nonlinear interactions are the direct factors
in the formation of large-scale zonal flows?

— introduce two types of nonlinear interactions YnBB XYy ¢ —>Y,?A:

nc

Near-Resonant interactions and Non-Local interactions




Near-Resonant nonlinear interactions and large-scale zonal flow formation



Development of zonal Rossby modes

Development of zonal flow / Spherical harmonics with zero upper subscripts have a zonal structure

= energy accumulation to ¥,Y(4, n) Rosst o r— ~r=modes)
t=0 energy spectrum E™(n-m space) E (n-m space)
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(energy is almost zero at higher wavenumbers)



Energy of zonal Rossby modes EJ

Sum of energy of zonal modes Y oad EOAL 1) 5 Ymeven Ea (A, 1)

0.5

- energyofzonalmodesw;th odd | — )

N "energy of zonal modes with even | ------ temporal development 0.2

. of zonal flows

n: odd integer v.) g

025t <« 3 o E‘,J:M

0.2 E-w-
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e e b Energy is only accumulated to zonal modes

Fig. 3. (Color online) Temporal variation of the Y,“_“Ju, and Y!U—L'\‘m modes Whose n Is IOW and Odd Integer Yn :odd Keep
from 1 = 0 to 10 in v,, = 0.0 case. (O and Yamada, 2020) |n mlnd

— a clue to the elucidation of the zonal flow
formation mechanism?

Speaking of the dependence on the parity of n, @
one important point we can think of is the three-wave resonant interaction.



three-wave resonant interaction of Rossby waves

: : : mp mc ma i
Nonlinear interaction of three Rossby waves 'Y, ° XY, = —Y, % is

resonant interaction when they satisfy " Rossby waves ™
i — Yo" (4, 1) exp(iwt),
Necessary mp + me = my | o
> o
conditions for ng —ng| < ny < ng + ne Y-
three-wave — I nn+ 1)
interaction ny + ng + n, = odd integer J
Additional Ny, Ng,N¢c > 0
condition for
resonant ——_, mpg Me my |
interaction + =
ng(ng +1 ncngc+1) nyny+1
p(ng +1) c(ng+1) a(ng +1)
Y2 ., can be a member of resonant triads (resonant zonal modes) threlg—vvave
YD .,are not resonant zonal modes nonlinear
Interaction

Energy accumulation to resonant zonal modes



/Zonal Rossby waves and tree-wave resonant interaction

> Specifically, in case of Q — w0 (or f— o )flow dynamics is totally governed by 3-

(Rossby) wave resonant nonlinear interactions:

—When Q is infinite, resonant interactions determines flow dynamics
for finite period of time (local existence time)T(Q).)

Theorem 2. Assume that a(0) = {a,(0)},c02 € ¢+(Z?%). Then
there is a local existence time T; and a local-in-time unique solution
a(t) = {ay(t)},e2 € C([0, Ty ] : £1(Z?)) satisfying

C
sup |[la(o)]| = 2||ao]l,

T, = \
||ﬂ'0||2 O<t<T

where C is a positive constant independent of B. Moreover if
|la(0)|ls < oo for s = 0, then we have the following pointwise
estimate:

rn(t) = remainder term

Theorem 3. Forall ¢ > O, thereis By > 0s.t ||r(f)]| < € for
0 <t < Trand |B| > Po. where Ty is the local existence time
(see Theorem 2).

T. Yoneda and M.Yamada (2013)
A. Dutrifoy and M. Yamada (in preparation)

triad

)
three-wave
nonlinear
interaction

- resonant interaction
is dominant
- only resonant modes

(Y9_. .. ) develop

< -
Can the formation of
zonal flows be 0

explained only by
three-wave nonlinear
resonant interactions?




three-wave resonant interaction of Rossby waves

Nonlinear interaction of three Rossby wavesY,'xY, —Y is
resonant interaction when they satisfy

~ Rossby waves )

—

mB _I_ mC —_ mA YT’{n(Al IJ-) eXp( l(l)t),
Conditions for - —2mQ
three-wave Ing —ng|l <ny <ng +ng W =
interaction . - nn+1)

ny + ng + n, = odd integer J
Additional Ny, ng,n¢c >0
condition for
resonant —_, mpg + mc _ my
interaction ng(ng +1)  ne(ng+1) nyu(ny +1) —

YY) 44 can be a member of resonant triads (resonant zonal modes) threlg—vvave
Y2 . ..are not resonant zonal modes _ﬂOﬂ megr
Interaction

No energy is transferred to zonal modes by resonant interactions
(Reznik et.al. 1993, Obuse and Yamada 2019)




No energy transfer to zonal Rossby modes by resonant interaction

Resonant triad with three zonal Rossby modes: (Obuse and Yamada 2019)
Y2 x Y2 - v Y x Y™ yY
1, < 1, l4 l ! l
YO O YII:I ¢ v Y[I:l 3 R Y[’]”]
ll Yl,
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= U "Wy = — i = ,
"/’3 "l st ) d¢p I o dg
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No energy transfer to zonal Rossby modes by resonant interaction

(Obuse and Yamada 2019, 2020)

Energy transfer by
Resonant interaction

Resonant Nonzonal
Rossby waves

NonResonant Nonzonal
Rossby waves

NonResonant Zonal
Rossby modes

Change phase

> Resonant Zonal

/

Rossby modes

Energy transfer by
Non-Resonant
interaction

- Energy transfer to Resonant Zonal
modes by Non-Resonant interactions
- Resonant interaction is still important

(and dominant).




/onal Rossby waves and three-wave resonant interaction

ol K. n

Nonlin

reson: lsby waves )

. . (4, 1) exp(iwt),
condif Then, how about near-resonant interactions?? _oma
three-

interac - n(n+1)

/

Additromman —
condition for \ / / \
resonant —w—_, Mmp mc \ My

+ ~
interaction ng(ng + 1) nc(nge +1) nyg(ng + 1)

=)
Y .4 can be a member of resonant triads (resonant zonal modes) threg—vvave
Y2 . ..are not resonant zonal modes .nonlmee.ar
Interaction

No energy is transferred to zonal modes by resonant interactions
(by detailed balance energy) (Reznik et.al. 1993, O. and Yamada 2019)




Do near-resonant interactions transfer energy to circumpolar zonal flow?

Consider three-wave interaction by nonlinear term

wave A (Y'B ) X wave B (Y€ ) —»wave C (Y9
ng nc na

resonant interaction :
wy — (g + we) =0

Define near-resonant interactions as

VVheﬂ Wy — ((L)B + (Dc) < eX RO, /

Ro: Rossby number Ejselfrir;llilt&;(r)n .
where _ YU y-1_ _2Xn"En o _ SR .
Ro = 20L’ L™= N(energy wighted mean) = Zn—En , U=+V2E Smith and
c=1.1X20 Lee 2005)
dEd ]
Then see dnA = ), _ Effect of three-wave interaction
t Inear—R All possible |
0 near-resonant triads
dE
d’;A = ), All possible Effect of three-wave interaction

INon—R non-resonant triads



Time variation of dE2 /dt

dt
by nonlinear interactions of Rossby waves

dEp _ dn |10
—= = nn+1) l/)n

N n
\ YA =Y Y PROR@A
n=0m=-—n

: temporal development
Use flow field data of 7onal flows

|||||||||
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Coefficients of nonlinear interactions

Time derivative of stream function spectrum'
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Time variation of dE2 /dt

. L dE
Time variation of energy of zonal mode d—"

t
by nonlinear interactions of Rossby waves
dE dy?, N
—=nn+1 0 §
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_ temporal development
Use flow field data of zonal flows
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Do near-resonant interactions transfer energy to circumpolar zonal flow?

Consider three-wave interaction by nonlinear term

wave A (Y'B ) X wave B (Y€ ) —»wave C (Y9
ng nc na

resonant interaction :
wy — (g + we) =0

Define near-resonant interactions as

VVheﬂ Wy — ((L)B + (Dc) < eX RO, /

Ro: Rossby number Ejselfrir;llilt&;(r)n .
where _ U (-1_ _2XaNEn 1 _ SR .
Ro = 20L’ L™= N(energy wighted mean) = Zn—En , U=+V2E Smith and
c=1.1X20 Lee 2005)
dED
Then see dnA = ), _ Effect of three-wave interaction
t Inear—R All possible |
0 near-resonant triads
dE
d:A = ), All possible Effect of three-wave interaction

INon—R non-resonant triads



Do near-resonant interactions transfer energy to circumpolar zonal flow?

Before seeing the result, please recall

lon—velocity

Energy spectrum (n—m space)

eol
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Do near-resonant interactions transfer energy to circumpolar zonal flow?

(dE
mean

0

)

dt

*Red: Non-Resonant, Green: Near-Resonant
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Only Near-Resonant interactions are directly sending energy
to circumpolar zonal flows.




Non-Local nonlinear interactions and large-scale zonal flow formation



Fnergy spectrum (energy of Rossby vvaves)E,’{1 at certain times

energy spectrum EM(n-m space) energy spectrum Ef*(n-m space, energy spectrum EF*(n-m space)
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X wavenumber region only n=0-50 is shown for simplicity



's energy transfer to circumpolar flow non-locally?

Consider three-wave interaction by nonlinear term

m
wave A (Y,.? ) X wave B (Y, ) —wave C (Y, )
A ¢
Define the non-local interactioin as |
o
. . < . B
When min(ng,n:) —ng = N% of min(ng,ne), ng — Ny
N=40 More than
40% of ng
(dEp
Then see —4 = . . .
| dt Iyon—Local 2l possible Effect of three-wave interaction
] ) non-local interactions
dEn , _y
| at |, ,cqr < All possible Effect of three-wave interaction

local interactions



s energy transfer to circumpolar flow mainly nonlocal?

dEy, . .
mean | —— caused by local and non-local inetrcations
. > . 40
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Only Non-Local interactions are directly sending energy
to circumpolar zonal flows.




Non-Local Near-Resonant nonlinear interactions
and large-scale zonal flow formation



Non-Local Near-Resonant nonlinear interactions and large-scale zonal flow formation

Near-Resonant interaction and Non-Local interaction
are completely different concepts

0

dE
We see mean (d_tn> caused by
v Non-Local Near-Resonant,
v Non-Local Non-Resonant
v Local Near-Resonant,
v Local Non-Resonant

nonlinear interactions



Non-Local Near-Resonant nonlinear interactions and large-scale zonal flow formation

Near-Resonant interaction and Non-Local interaction
are completely different concepts
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Non-Local Near-Resonant nonlinear interactions and large-scale zonal flow formation

Near-Resonant interaction and Non-Local interaction
are completely different concepts
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{Near-Resonant interactions}~{Non-Local interactions} in this system, and energy
is non-locally transferred to large-scale zonal modes by near-resonant interactions




Summary and Discussion

In unforced two-dimensional turbulence on a rotating sphere
— formation of large-scale circumpolar westward zonal flows,
but the mechanism of zonal flow formation is not well understood.

By closely seeing energy transfer, it was suggested that
direct factor of large-scale zonal flow formation is

Non-Local energy transfer to large-scale zonal modes
by Near-Resonant interactions



Summary and Discussion

Direct factor of large-scale zonal flow formation is

Non-Local energy transfer to large-scale zonal modes
i by Near-Resonant interactions

|
/Importance of non-local interactions may be strongly related

to the compactness of the considered flow field domain.
Spherical domain is compact and basic modes are discrete.
Therefore the nonlinear interactions must be non-local, and

\this tendency is stronger in the low wavenumber region. -

In numerical calculations, not only does it mnportance of near-resonant \
happen that the nonlocal near-resonant interactions is in natural agreement
interaction works strongly due to with the intuition derived from the
the geometric constraint, but the flow field | fact that resonant interactions are the
evolves in time from a random uniform ones that work most strongly in this
initial state so that the non-local near- system, but do not function on zonal

resonant interaction dominates. Rossby modes. /




