Rossby wave nonlinear interactions and large-scale zonal flow formation in two-dimensional turbulence on a rotating sphere

Apologies: probably should have been presented in another session.

EGU24-15282

EGU Meeting 2024 19th April, 2024

- at Austria Center Vienna
- /ienna
- Y. Hagimori¹, <u>K. Obuse¹</u>, and M. Yamada²
- 1: Okayama University
- 2: Kyoto University

· 2D Navier-Stokes turbulence on a rotating sphere

- equations used in this talk
- zonal flow structure in 2D turbulence on a rotating system

· Rossby waves

- flow dynamics and Rossby waves
- resonant interaction of Rossby waves

\cdot Nonlinear interactions of Rossby waves and zonal flow formation

- Near-Resonant interactions and zonal flow formation
- Non-Local energy transfer and zonal flow formation
- Summary and Discussion

Menu of the day

- · 2D Navier-Stokes turbulence on a rotating sphere
 - equations used in this talk
 - zonal flow structure in 2D turbulence on a rotating system
- · Rossby waves
- flow dynamics and Rossby waves
- resonant interaction of Rossby waves
- \cdot Nonlinear interactions of Rossby waves and zonal flow formation
- Near-Resonant interactions and zonal flow formation
- Non-Local energy transfer and zonal flow formation
- Summary and Discussion

2D turbulence on a rotating sphere

The system I am mainly interested in \cdots

> 2D turbulence on a rotating sphere

Interested in ... :

- the characteristics of the solution of Navier-Stokes equations
- inhomogeneous and anisotropic structure (zonal flow) formation
- in relation to planetary atmospheres and oceans
- (foundation of more complicated and realistic mathematical models)
- in relation to plasma physics (Hasegawa-Mima equation)

(Sphere→beta-plane→H-M equation)

2D Navier-Stokes equations and Vorticity equation on a rotating sphere

<u>2-dimentional Navier-Stokes equations on a rotating sphere:</u>

2D Navier-Stokes equations and Vorticity equation on a rotating sphere

 $\mathbf{\Omega} = (0, 0, \Omega)$

> Non-dimentionalised vorticity equation on a <u>rotating sphere</u> (Navier-stokes equations + continuity equation \rightarrow vorticity equation)

$$\begin{array}{c} \frac{\partial \zeta}{\partial t} + J(\psi,\zeta) + 2\Omega \frac{\partial \psi}{\partial \lambda} = & D_{issipation} + & F_{orcing} \\ & \text{advection} \\ & (\text{nonlinear}) & \text{rotation} \end{array}$$

$$\begin{split} &(\lambda,\mu): \text{longitude, sin(latitude),} \quad \Omega: \text{ rotation rate of the sphere} \\ &\psi(\lambda,\mu,t): \text{ stream function,} \quad \zeta \equiv \nabla^2 \psi: \text{ vorticity,} \quad \text{ nonlinear term} \\ &u_{lon} = -\sqrt{1-\mu^2} \frac{\partial \psi}{\partial \mu}, \quad u_{lat} = \frac{1}{\sqrt{1-\mu^2}} \frac{\partial \psi}{\partial \lambda}, \quad J(A,B) \stackrel{\checkmark}{=} \frac{\partial A}{\partial \lambda} \frac{\partial B}{\partial \mu} - \frac{\partial A}{\partial \mu} \frac{\partial B}{\partial \lambda} \end{split}$$

Zonal flow formation in 2D turbulence on rotating systems

> Unforced: westward circumpolar flows (Yoden and Yamada1993, Takehiro et al. 2007)

➢ Forced: multiple zonal band structure → a few large zonal flows Longitudinal (Nozawa and Yoden 1997, Obuse et al. 2010) velocity

 Zonal structure is formed and maintained for a very long time
 Mechanism of zonal flow formation is not yet made clear 2D Navier-Stokes equations and Vorticity equation on a rotating sphere

> Non-dimentionalised vorticity equation on a <u>rotating sphere</u> (**Euler** equations + continuity equation \rightarrow vorticity equation)

Zonal flow formation in 2D turbulence on rotating systems

> westward circumpolar zonal flows (Yoden and Yamada1993, Takehiro et al. 2007)

Lots of study from various points of view →Mechanism of large-scale zonal flow formation has not been made clear yet. →Introduce our trial by using nonlinear wave interactions

Menu of the day

- 2D Navier-Stokes turbulence on a rotating sphere
 - equations used in this talk
 - zonal flow structure in 2D turbulence on a rotating system

· Rossby waves	• Often used to discuss the flow dynamics
 flow dynamics and Rossby waves 	in rotating system.
- resonant interaction of Rossby waves	• We also use them today

- \cdot Nonlinear interactions of Rossby waves and zonal flow formation
- Near-Resonant interactions and zonal flow formation
- Non-Local energy transfer and zonal flow formation
- Summary and Discussion

Rossby waves 2D incompressible flow on a rotating sphere

Wave solutions called **Rossby waves** (specific for rotating systems) $\Omega = (0, 0, \Omega)$ $\begin{bmatrix}
Y_n^m(\lambda, \mu) \exp(-i\omega t), \\
\omega = \frac{-2m\Omega}{n(n+1)}
\end{bmatrix} Y_n^m(\lambda, \mu) = P_n^m(\lambda, \mu) \exp(-im\lambda) \\
\vdots \text{ spherical harmonics}$

<u>Dynamics of Rossby waves determines the temporal variation of flow filed</u>. (Three-wave)Nonlinear interactions of Rossby waves are important!

We investigate zonal flow formation from the perspective of three-Rossby-wave nonlinear interaction

Briefly introduce

- zonal Rossby modes
- conditions for three-wave nonlinear interaction
- resonant three-wave nonlinear interaction

Rossby waves in charge of describing zonal flows (zonal Rossby modes)

$Y_n^0(\lambda,\mu)$ modes have zonal structures

Development of zonal Rossby modes

Development of zonal flow = energy accumulation to $Y_n^0(\lambda, \mu)$ Rossby modes

Rossby waves 2D incompressible flow on a rotating sphere

Wave solutions called **Rossby waves** (specific for rotating systems) $\Omega = (0, 0, \Omega)$ $\begin{bmatrix}
Y_n^m(\lambda, \mu) \exp(-i\omega t), \\
\omega = \frac{-2m\Omega}{n(n+1)}
\end{bmatrix} Y_n^m(\lambda, \mu) = P_n^m(\lambda, \mu) \exp(-im\lambda) \\
\vdots \text{ spherical harmonics}$

<u>Dynamics of Rossby waves determines the temporal variation of flow filed</u>. (Three-wave)Nonlinear interactions of Rossby waves are important!

We investigate **energy accumulation to zonal Rossby modes with low** *n* **from the perspective of three-Rossby-wave nonlinear interaction**

Briefly introduce

- zonal Rossby modes
- conditions for three-wave nonlinear interaction
- three-wave resonant nonlinear interaction

three-wave resonant interaction of Rossby waves

Nonlinear interaction of three Rossby waves $Y_{n_B}^{m_B} \times Y_{n_C}^{m_C} \rightarrow Y_{n_A}^{m_A}$ is resonant interaction when they satisfy Rossby waves $Y_n^m(\lambda,\mu) \exp(i\omega t),$ $m_B + m_C = m_A$ Necessary $\frac{-2m\Omega}{n(n+1)}$ conditions for $|n_B - n_C| \le n_A \le n_B + n_C$ three-wave $n_A + n_B + n_C = \text{odd integer}$ interaction $Y_{n_A}^{m_A}$ $n_A, n_B, n_C > 0$ Additional condition for resonant $\frac{m_B}{n_B(n_B+1)} + \frac{m_C}{n_C(n_C+1)} = \frac{m_A}{n_A(n_A+1)}$ interaction triac $Y_{n_B}^{m_B}$ $_{\tau}m_{C}$ n_{C}

> three-wave nonlinear interaction

> Specifically, in case of $\Omega \to \infty$ (or $\beta \to \infty$)<u>flow dynamics is totally governed by 3-(Rossby) wave resonant nonlinear interactions</u>:

 \rightarrow When Ω is infinite, resonant interactions determines flow dynamics for finite period of time (local existence time)T(Ω).)

Resonant interactions should be the type of interactions that works most strongly in the numerical calculations.

A. Dutrifoy and M. Yamada (in preparation)

Menu of the day

- · 2D Navier-Stokes turbulence on a rotating sphere
 - equations used in this talk
 - zonal flow structure in 2D turbulence on a rotating system
- · Rossby waves
- flow dynamics and Rossby waves
- resonant interaction of Rossby waves
- \cdot Nonlinear interactions of Rossby waves and zonal flow formation
- Near-Resonant interactions and zonal flow formation
- Non-Local energy transfer and zonal flow formation
- What kind of
- $Y_{n_B}^{\mathbf{m}_B} \times Y_{n_C}^{\mathbf{m}_C} \rightarrow Y_{n_A}^{\mathbf{0}}$

are important?

Summary and Discussion

Three-wave nonlinear interactions and zonal flow formation

> westward circumpolar zonal flows (Yoden and Yamada1993, Takehiro et al. 2007)

What kind of three-Rossby-wave nonlinear interactions are the direct factors in the formation of large-scale zonal flows? \rightarrow introduce two types of nonlinear interactions $Y_{n_B}^{m_B} \times Y_{n_C}^{m_C} \rightarrow Y_{n_A}^{\mathbf{0}}$: <u>Near-Resonant</u> interactions and <u>Non-Local</u> interactions Near-Resonant nonlinear interactions and large-scale zonal flow formation

Development of zonal Rossby modes

Energy of zonal Rossby modes E_n^0

Sum of energy of zonal modes $\sum_{n:odd} E_n^0(\lambda,\mu)$, $\sum_{n:even} E_n^0(\lambda,\mu)$

- Speaking of the dependence on the parity of n, $\sqrt{2}$
 - one important point we can think of is the three-wave resonant interaction.

three-wave resonant interaction of Rossby waves

Energy accumulation to resonant zonal modes

Zonal Rossby waves and tree-wave resonant interaction

> Specifically, in case of $\Omega \to \infty$ (or $\beta \to \infty$)flow dynamics is totally governed by 3-(Rossby) wave resonant nonlinear interactions:

→When Ω is infinite, resonant interactions determines flow dynamics for finite period of time (local existence time)T(Ω).)

Theorem 2. Assume that $a(0) := \{a_n(0)\}_{n \in \mathbb{Z}^2} \in \ell_1(\mathbb{Z}^2)$. Then there is a local existence time T_L and a local-in-time unique solution $a(t) := \{a_n(t)\}_{n \in \mathbb{Z}^2} \in C([0, T_L] : \ell_1(\mathbb{Z}^2))$ satisfying $T_L \ge \frac{C}{\|a_0\|^2}, \quad \sup_{0 < t < T_L} \|a(t)\| \le 2\|a_0\|,$ where *C* is a positive constant independent of β . Moreover if $\|a(0)\|_s < \infty$ for $s \ge 0$, then we have the following pointwise estimate: **Theorem 3.** For all $\epsilon > 0$, there is $\beta_0 > 0$ s.t. $\|r(t)\| \le \epsilon$ for $0 < t < T_L$ and $|\beta| > \beta_0$, where T_L is the local existence time (see Theorem 2). **three matrix**

T. Yoneda and M.Yamada (2013) A. Dutrifoy and M. Yamada (in preparation)

three-wave resonant interaction of Rossby waves

No energy is transferred to zonal modes by resonant interactions (Reznik et.al. 1993, Obuse and Yamada 2019)

No energy transfer to zonal Rossby modes by resonant interaction

Resonant triad with three zonal Rossby modes:

(Obuse and Yamada 2019)

$$Y_{l_2}^{m_2} \times Y_{l_3}^{m_3} \to Y_{l_1}^{m_1}$$

$$\begin{split} & Y\left(\psi_{l_{2}}^{m_{2}}Y_{l_{2}}^{m_{2}}, l_{3}(l_{3}+1)\psi_{l_{3}}^{m_{3}}Y_{l_{3}}^{m_{3}}\right) + J\left(\psi_{l_{3}}^{m_{3}}Y_{l_{3}}^{m_{3}}, l_{2}(l_{2}+1)\psi_{l_{2}}^{m_{2}}Y_{l_{2}}^{m_{2}}\right) \\ & = \psi_{l_{2}}^{m_{2}}\psi_{l_{3}}^{m_{3}}l_{3}(l_{3}+1)\left(\frac{\partial Y_{l_{2}}^{m_{2}}}{\partial\phi}\frac{\partial Y_{l_{3}}^{m_{3}}}{\partial\mu} - \frac{\partial Y_{l_{2}}^{m_{2}}}{\partial\mu}\frac{\partial Y_{l_{3}}^{m_{3}}}{\partial\phi}\right) \\ & + \psi_{l_{2}}^{m_{2}}\psi_{l_{3}}^{m_{3}}l_{2}(l_{2}+1)\left(\frac{\partial Y_{l_{3}}^{m_{3}}}{\partial\phi}\frac{\partial Y_{l_{2}}^{m_{2}}}{\partial\mu} - \frac{\partial Y_{l_{3}}^{m_{3}}}{\partial\mu}\frac{\partial Y_{l_{2}}^{m_{2}}}{\partial\phi}\right), \end{split}$$

No energy transfer to zonal Rossby modes by resonant interaction

Zonal Rossby waves and three-wave resonant interaction

(by detailed balance energy) (Reznik et.al. 1993, O. and Yamada 2019)

Then see
$$\left[\frac{dE_{n_A}^0}{dt}\right]_{Near-R} = \sum_{\substack{\text{All possible} \\ near-resonant triads}}} Effect of three-wave interaction} \\ \left[\frac{dE_{n_A}^0}{dt}\right]_{Non-R} = \sum_{\substack{\text{All possible} \\ non-resonant triads}}} Effect of three-wave interaction}$$

Time variation of dE_n^0/dt

Time variation of energy of zonal mode $\frac{dE_n^0}{dt}$ by nonlinear interactions of Rossby waves

Coefficients of nonlinear interactions

Time variation of dE_n^0/dt

Time variation of energy of zonal mode $\frac{dE_n^0}{dt}$ by nonlinear interactions of Rossby waves

Then see
$$\left[\frac{dE_{n_A}^0}{dt}\right]_{Near-R} = \sum_{\substack{\text{All possible} \\ near-resonant triads}}} Effect of three-wave interaction} \\ \left[\frac{dE_{n_A}^0}{dt}\right]_{Non-R} = \sum_{\substack{\text{All possible} \\ non-resonant triads}}} Effect of three-wave interaction}$$

Before seeing the result, please recall

Energy spectrum (n-m space)

0.024

0.048

0.072 9.57e-2

mean $\left(\frac{dE_n^0}{dt}\right)$ caused by near-resonant and non-resonant interactions $(\omega_A - (\omega_B + \omega_C) \le 1.1 \text{Ro})$

%Red: Non-Resonant, Green: Near-Resonant

Only Near-Resonant interactions are directly sending energy to circumpolar zonal flows.

Non-Local nonlinear interactions and large-scale zonal flow formation

Energy spectrum (energy of Rossby waves) E_n^m at certain times

energy spectrum E_n^m (n-m space) energy spectrum E_n^m (n-m space) energy spectrum E_n^m (n-m space)

Is energy transfer to circumpolar flow non-locally?

Consider three-wave interaction by nonlinear term wave A $(Y_{n_B}^{m_B})$ × wave B $(Y_{n_C}^{m_C})$ → wave C $(Y_{n_A}^{0})$

Define the non-local interactioin as

When $\min(n_B, n_C) - n_A \ge N\% \text{ of } \min(n_B, n_C),$ N=40

Then see $\left[\frac{dE_{n_A}^0}{dt}\right]_{Non-Local} = \sum_{\substack{A \parallel \text{ possible non-local interactions}}} Effect of three-wave interactions} \left[\frac{dE_{n_A}^0}{dt}\right]_{Local} = \sum_{\substack{A \parallel \text{ possible non-local interactions}}} Effect of three-wave interaction}$

Only Non-Local interactions are directly sending energy to circumpolar zonal flows.

Non-Local Near-Resonant nonlinear interactions and large-scale zonal flow formation Non-Local Near-Resonant nonlinear interactions and large-scale zonal flow formation

Near-Resonant interaction and Non-Local interaction are completely different concepts

We see mean
$$\left(\frac{dE_n^0}{dt}\right)$$
 caused by

- ✓ Non-Local Near-Resonant,
- ✓ Non-Local Non-Resonant
- ✓ Local Near-Resonant,
- ✓ Local Non-Resonant

nonlinear interactions

Non-Local Near-Resonant nonlinear interactions and large-scale zonal flow formation

Near-Resonant interaction and Non-Local interaction are completely different concepts

mean $\left(\frac{dE_n^0}{dt}\right)$ caused by Non-Local Non-Resonant, Local Near-Resonant, and Local Near-Resonant interactions

Energy transfer to large-scale zonal modes by these interactions is almost zero.

Non-Local Near-Resonant nonlinear interactions and large-scale zonal flow formation

Near-Resonant interaction and Non-Local interaction are completely different concepts

{Near-Resonant interactions}~{Non-Local interactions} in this system, and energy is non-locally transferred to large-scale zonal modes by near-resonant interactions

Summary and Discussion

In unforced two-dimensional turbulence on a rotating sphere → formation of large-scale circumpolar westward zonal flows, but the mechanism of zonal flow formation is not well understood.

By closely seeing energy transfer, it was suggested that direct factor of large-scale zonal flow formation is

Non-Local energy transfer to large-scale zonal modes by Near-Resonant interactions

Summary and Discussion

Direct factor of large-scale zonal flow formation is

Importance of **non-local interactions** may be strongly related to the **compactness** of the considered flow field domain. Spherical domain is compact and **basic modes are discrete**. Therefore the nonlinear interactions must be non-local, and this tendency is stronger in the low wavenumber region.

In numerical calculations, not only does it happen that the nonlocal near-resonant interaction works strongly due to the geometric constraint, but the **flow field evolves in time from a random uniform initial state so that the non-local nearresonant interaction dominates.**

Importance of **near-resonant interactions** is in **natural agreement with the intuition** derived from the fact that resonant interactions are the ones that work most strongly in this system, but do not function on zonal Rossby modes.