Enabling seamless integration of Copernicus and in-situ data

lason Sotiropoulos^{1*}, Athos Papanikolaou¹, Odysseas Sekkas², Anastasios Polydoros², Vassileios Tsetsos^{2,} Claudio Pisa³ and Stamatia Rizou¹ ¹SingularLogic, Athens, Greece; ²Mobics, Athens, Greece; ³ECMWF, Reading, UK *E-mail: isotiropoulos@singularlogic.eu

Motivation

- BUILDSPACE project aims to couple terrestrial building data with aerial imaging from drones equipped with thermal cameras and location data from satellite services to support informed decision-making toward energy-efficient buildings and climate-resilient cities
- Diverse data types from various sources, including loT devices, satellite imagery, and building information models are needed to ensure comprehensive insights and enable holistic analysis
- Collaboration among organizations is essential for addressing complex urban challenges and maximizing the impact of initiatives like BUILDSPACE
- Fast speeds in managing files enhance operational efficiency, enabling stakeholders to access and exchange information without delays

Approach

- Deployment of Core Platform in a Kubernetes cluster for data upload, download, and sharing, with a backbone component being a **REST API**
- The REST API will be consumed by the BUILDSPACE services and a User Interface to facilitate data management
- Implementation of user authentication using OpenID Connect (OIDC), ensuring secure access to the platform and group authorization, allowing users within the same organization to access shared data
- Data stored in an S3-compatible file system for efficient storage, split into blobs ensuring the platform's type-agnosticism
- Meta data of files stored in a NoSQL database to facilitate efficient data management and retrieval.
- Implementation of a sharing functionality that allows data owners to specify sharing terms and conditions
- Implementation of folder logic to assist in organizing, managing, and sharing data within the BUILDSPACE ecosystem
- Integration of 3 Copernicus APIs under a single endpoint to provide users with access to Copernicus data

https://meetingorganizer.coper nicus.org/EGU24/EGU24-.5366.html

E-mail: isotiropoulos@singularlogic.eu

Conclusions & Future Work

• Testing of the core platform functionalities in the context of the pilot cases in the BUILDSPACE project **Frontend development** to provide a catalogue of data resources

- Further fine-tune the platform to support more data sources & data operations

Key Points and Summary Figure

- **Scalability**: Deployed on Kubernetes cluster, designed to handle large volumes of data and user requests.
- Enhanced Security: Utilizes secure authentication mechanisms and granular sharing controls to protect sensitive data.
- Seamless Integration: Integrates with Copernicus APIs and other external services, providing users with access to a wide range of data sources.
- Flexibility: Supports diverse data formats
- Collaboration: Facilitated among organizations through seamless data sharing and access controls.
- Efficient Data Handling: Implements efficient data storage and management techniques to ensure optimal performance and resource management
- Accelerated Data Operations: The split of data into blobs enables HTTP parallelization, allowing for the simultaneous retrieval of data segments

	Land Service	
	Climate ChangeService	
	Atmosphere Service	
	Galileo HA Service	
	Sensor data	Accor AF
787	IoT device data	Gr
		OIDC

Fig. 1 High level architecture of the core platform

Funded by the European Union