1. Motivation

Energy input into the ocean by wave growth

- 1. Turbulent eddies generate ripples
- 2. Asymmetric boundary layer thinning & thickening causes sheltering events downwind of wave crests
- 3. Pressure difference transfers energy from wind to wave
- 4. Wind speed equals wave speed at critical height
- 5. Waves cause airflow shear instability leading to wave growth

Assumption: Critical layer theory¹ may be important for **intermediate wave** ages, while sheltering mechanisms dominate energy transfer for young and old waves

Padian; Pizzo, N. et al. (2021). How does the wind generate waves? *Physics Today*

2. Methods

Experimental set-up

- Remote-controlled, high-resolution (130 µm/px), rotating Particle Image Velocimetry (PIV) system installed in the Szczecin Lagoon (Baltic Sea coast, Germany)
- Fetch: 20-25 km, PIV frequency: 14 velocity fields/s

 \approx 0.45 m

Experimental conditions

- Power spectral density estimation of water surface elevation time series to detect **peak frequency**
- Cross-spectral analysis of two adjacent wave gauges (WG1 & WG2) to calculate intrinsic wave speed and wind drift
- Wind drift velocity 1.6 % of wind speed at 10 m height

Wind speed at 10 m (m/s)	Peak frequency (Hz)	Wave speed (m/s)	Wind drift (m/s)	Wave- length (m)	Slope ak_p (-)	W
5.69	0.55	2.94±1.19	0.09±1.03	5.53	0.08	

Small slope & intermediate wave age

In-situ Airflow Measurements over Surface Waves using PIV

Janina Tenhaus, Marc Buckley, Jeffrey Carpenter Institute of Coastal Ocean Dynamics, Helmholtz-Zentrum Hereon, Geesthacht, Germany

Take-home messages

- In-situ airflow measurements over surface waves show a critical layer in the vertical wave-coherent velocity field
- The phase of the vertical velocity eigenfunction shows agreement with Miles' linear theory¹
- The calculated dimensionless wave growth rate using the wave momentum flux is in agreement with other studies

Contact: Janina Tenhaus • T +49 4152 87-2162 • janina.tenhaus@hereon.de

¹Miles, J. W. (1957). On the generation of surface waves by shear flows. *Journal of Fluid Mechanics*

3. Results

Instantaneous 2D velocity fields

• **Resolution**: 1 velocity vector / 0.5 mm

Wave-coherent velocity fields

- and subsequent linear interpolation

Wave-coherent vertical velocity is phase shifted at critical height, within critical layer **airflow follows wave orbital motion**

Comparison to linear theory²

Phase of vertical velocity eigenfunction is consistent with Miles' linear theory¹, while its shape shows some agreement

Carpenter, J. et al. (2022). Evidence of the critical layer mechanism in growing wind waves. Journal of Fluid Mechanics

Wave growth rates

- First approach: Growth rate obtained by applying linear theory to observed wind profile is similar to what is expected³ (optimal phase shift for wave growth $\pi/2$)
- Second approach: Wave-coherent momentum flux, wave age, and wave slope are all essential parts of the wave growth process⁴:

$$\beta = 4\pi \frac{\rho}{\rho_w} \frac{\tau_w}{\rho u_*^2} \frac{u_*^2}{c^2} \frac{1}{(ak)^2}$$

Wave growth rate is in agreement with other studies

³Komen, G. J. et al. (1994). *Dynamics and modelling of ocean waves*. Cambridge University Press. ⁴Buckley, M. et al. (2020). Surface viscous stress over wind-driven waves with intermittent airflow separation. *Journal of* Fluid Mechanics

4. Conclusions

- using simulations (see QR code) that can calculate pressure fields

• **Observed** eigenfunction: $\widehat{w}(z) = \int_0^{2\pi} \widetilde{w}(\varphi, z) e^{-i\varphi} \frac{d\varphi}{\pi}$ **Theory** (Rayleigh equation): $\widehat{w}'' - \left(k^2 + \frac{U''}{U-c}\right)\widehat{w} = 0$

• There must be a pressure difference to make waves grow, but the mechanism that causes this asymmetry is still unclear, it cannot be explained by Miles' critical layer theory¹ alone • Future work needs to look at different scenarios

