

Assessing the relationship between European forest structural diversity and resilience in a warming climate

Mark Pickering, Agata Elia, Marco Girardello, Gonzalo Oton, Matteo Piccardo, Samuele Capobianco, Giovanni Forzieri, Mirco Migliavacca, Alessandro Cescatti European Commission Joint Research Centre, Ispra, Italy

> Joint Research Centre

Forzieri G. et al 2022

Why?

- We are observing declines in vegetation resilience under climate change
- What makes forests resilient? What can we do?

Forzieri G. et al 2022

Why?

- We are observing declines in vegetation resilience under climate change
- What makes forests resilient? What can we do?

nature

Emerging signals of declining forest resilience under climate change

<u>Giovanni Forzieri</u>⊠, <u>Vasilis Dakos, Nate G. McDowell, Alkama Ramdane</u> & <u>Alessandro Cescatti</u>

ARTICLES https://doi.org/10.1038/s41558-019-0583-9 nature climate change

Reduced resilience as an early warning signal of forest mortality

Yanlan Liu¹, Mukesh Kumar ^{12*}, Gabriel G. Katul^{1,3} and Amilcare Porporato^{4,5}

nature climate change

ARTICLES https://doi.org/10.1038/s41558-022-01287-8

Check for upda

OPEN

Pronounced loss of Amazon rainforest resilience since the early 2000s

Chris A. Boulton^{®1⊠}, Timothy M. Lenton^{®1} and Niklas Boers^{®1,2,3}

Resilience

• Engineering resilience: Restoration rate (λ) at which a system returns to equilibrium

 $\frac{dx}{dt} = \lambda x + \sigma \frac{d\epsilon}{dt} \quad ; \quad x(t) = x_0 e^{\lambda t} + \sigma \epsilon$

$$x(t_{n+1}) = \alpha x(t_n) + \sigma \epsilon(t_n) + c \quad ; \quad \alpha = e^{\lambda} = AC$$

- With autocorrelation AC, variance V[x] and stochastic term $\sigma\epsilon$
- Defines Ornstein-Uhlenbeck process: mean-reverting random walk

Metrics relating to system memory

Rest. Rate $AC1 = |\ln(\alpha)|$

Metric relating to system stability

Rest. Rate Variance =
$$\left|\frac{1}{2}\ln\left(1 - \frac{\sigma^2}{V[x]}\right)\right|$$

Rates often defined as negative (restoring equilibria) in literature Here we consider the absolute value such that \uparrow Rate = \uparrow Resilience As rates approach zero we see slowness in the system (CSD)

Smith, Taylor and Boers, Niklas, 2023 ; Scheffer, Marten et al. 2009

Vegetation data

Resilience in proxy for forest productivity

$$\mathrm{kNDVI} = tanh\left(\frac{NDVI^3}{|NDVI|}\right)$$

Camps-Valls et al., 2021

- Take forest masked pixels (500m) removing loss/change
- Remove the dominant seasonal cycle
- Filter (clouds) outlier points
- Correct the long term trend (CO2 fert, GW, etc)
- Aggregate to 5km
- Result: pixelwise time series of kNDVI
 perturbations from seasonal average

Avitabile, V, JRC, Forest Biomass Europe, 2020

Vegetation data

Resilience in proxy for forest productivity

$$\mathrm{kNDVI} = tanh\left(\frac{NDVI^3}{|NDVI|}\right)$$

- Camps-Valls et al., 2021
- Take forest masked pixels (500m) removing loss/change
- Remove the dominant seasonal cycle
- Filter (clouds) outlier points
- Correct the long term trend (CO2 fert, GW, etc)
- Aggregate to 5km
- Result: pixelwise time series of kNDVI perturbations from seasonal average

Vegetation

What determines TAC & Variance

- Aridity dominates
- Short and long term climate factors & variability

RMSE> 0.9

• Forest density, soil quality, etc

Keersmaecker et al. 2015

Vegetation Structure

- GEDI maps forest Lidar waveform from ISS
- Gives us relative canopy heights (RH) and forest canopy cover

GEDI

Structural Diversity

- GEDI maps forest Lidar waveform from ISS
- Gives us relative canopy heights (RH) and forest canopy cover
- Several metrics of structural diversity computed across 5km pixel:

Horizontal

S.D. in RH98 =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (RH98_i - \mu(RH98))^2}$$
 Higher S.D. = More diversity in canopy height

Horizontal & Vertical

Shannon Entropy =
$$-\sum_{i} p_i \log(p_i)$$

{RH50, RH75, RH98, CC}

Higher Entropy = More diversity in canopy structure

More negative =

More diversity in vertical structure

Vertical

Excess kurtosis =
$$\frac{E[(X - \mu(X))^4]}{(E[(X - \mu(X))^2])^2} - 3$$

See future dataset paper: "A dataset on the diversity of canopy structure of European Forests" Marco Girardello, Gonzalo Oton, Matteo Piccardo, Mirco Migliavacca, Alessandro Cescatti

kNDVI time series detrended

Copernicus

Modelling Framework

European Commission

OpenLandMap

kNDVI time series detrended

Copernicus

Modelling Framework

Rest. Rate AC1 for Excess kurtosis

Commission

Diversity-Resilience relationship

- Controlling for all the model variables except diversity what is the effect on resilience?
- Europe-wide relationship between the different diversity and resilience metrics

Diversity-Resilience relationship (local)

- Individual conditional expectation ICE figures
- Control each variable at the local pixel level value and allow the diversity metric to vary
- Gives the local level relationship direction and strength
- As we increase diversity, resilience metric increases

Diversity-Resilience-Temperature relationship

What is the relationship as a function of temperature?

As temperatures rise, resilience declines – unless diversity also increases

Can diversity offset resilience decline?

Isolines of constant resilience (current mean for that BGR)

As temperatures rise, resilience declines – unless diversity also increases

Summary

- There is a relationship between forest structural diversity and forest resilience: more structurally diverse forests are more resilient.
- Canopy complexity is more important than diversity in forest height
- In the near-term, increases in forest structural diversity may compensate for the resilience loss associated with warming temperatures
- This is particularly true for Mediterranean species which may be more adapted to aridity

Questions?

End

Structural Diversity

- GEDI maps forest Lidar waveform from ISS
- Gives us relative canopy heights (RH) and forest canopy cover
- Several metrics of structural diversity computed across 5km pixel:

Horizontal

S.D. in RH98 =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (RH98_i - \mu(RH98))^2}$$

Shannon Entropy = $-\sum_{i=1}^{N} p_i \log(p_i)$
{RH50, RH75, RH98, CC}

canopy height Higher Entropy =

More diversity in

Higher S.D. =

More diversity in canopy structure

Vertical

Excess kurtosis =
$$\frac{E[(X - \mu(X))^4]}{(E[(X - \mu(X))^2])^2} - 3$$

More negative = More diversity in vertical structure

-1

o Kurtosis

Feature Importance

- Build separate models for each diversity metric
- Build separate models for each resilience metric
- Resulting model has high R² and low bias
- Different diversity metrics differences in importance

Vegetation resilience

Frequency 0000

-4

kNDVI Rest. Rate Var

Ó

Model Performance

Variable Importance

Diversity-Resilience Relationship

Diversity-Resilience Relationship With Temperature

