

## **Emission inventory and critical assimilative carrying capacity** of petroleum refinery in India: EGU24-166 [AS5.10] Udita Gupta<sup>1\*</sup>, Sruthi Jayaraj<sup>1</sup>, and Shiva Nagendra S. M.<sup>1</sup>

<sup>1</sup>Department of Civil Engineering, Indian Institute of Technology Madras, India \*uditagupta99@gmail.com

## Objectives



•

To calculate the Emission Inventory of stack operations.

To evaluate carrying capacity using Iterative dispersion modelling simulations

### Motivation

- Criteria air pollutants from stack • emissions of refineries are understudied.
- To regulate capacity building of industry



# Methodology

- USEPA methodology of emission inventory calculation based on **fuel consumption** and composition
- Dispersion modeling (CALPUFF View) with current emissions, and resulting concentrations are compared with NAAQS-2009
- Model Validation (R2 Value) • 0.73 for 8-hour average NO<sub>2</sub> • 0.63 for 8-hour average  $SO_2$ 
  - Scenarios Current emissions increased in the steps of 30% till 90% Extrapolated till NAAQS is achieved
- **Carrying Capacity = Emissions at which** concentration exceeds NAAQS

#### **Remaining Carrying Capacity = Carrying Capacity - Current Emissions**

Spatial Distribution of 24-Hour Average SO<sub>2</sub> (Annual)



•

Source: https://pngtree.com/

European Geosciences Union (EGU) General Assembly 14 -19 April 2024 in Vienna, Austria





## Conclusions

Primary Units and Captive processes have the highest emissions Seasonal carrying capacity is minimum in winters and maximum in summers

## References

AP 42, Fifth Edition, Volume I Chapter 5: Petroleum Industry Panda S. (2017), Dissertation, Indian Institute of Technology, Madras



