

Advanced processing strategies for a future GFZ GRACE/GRACE-FO Level-2 data release SUPPLEMENTARY MATERIAL

Murböck M.¹, Dahle C.², Panafidina N.², Hauk M.², Wilms J.², Neumayer K.-H.², Flechtner F.^{1,2}

- 1 TU Berlin, Physical Geodesy, murboeck@gfz-potsdam.de
- 2 Helmholtz Centre Potsdam, GFZ, Section 1.2: Global Geomonitoring and Gravity Field

https://doi.org/10.5194/egusphere-egu24-16789

Improving and better understanding

- Background models
 - Stochastic modeling of ocean tide (OT) models Sulzbach et al. (2023) <u>https://doi.org/10.5880/nerograv.2023.003</u> Hauk et al. (2023) <u>https://doi.org/10.1029/2023EA003098</u>
 - Stochastic modeling of non-tidal atmospheric and oceanic de-aliasing (AOD) models Shihora et al. (2022), <u>https://doi.org/10.5880/GFZ.1.3.2022.003</u> Shihora et al. (2023), <u>https://doi.org/10.5880/nerograv.2023.004</u> Wilms et al., poster presentation, EGU24-16530

Improving and better understanding

- Background models
 - Stochastic modeling of ocean tide (OT) models
 - Stochastic modeling of non-tidal atmospheric and oceanic de-aliasing (AOD) models
- Sensor data
 - Stochastic modeling of GPS data
 - Stochastic modeling of ACC, MWI, and LRI data
 - Murböck et al. (2023)

https://www.mdpi.com/2072-4292/15/3/563

https://doi.org/10.5880/nerograv.2023.001

Improving and better understanding

- Background models
 - Stochastic modeling of ocean tide (OT) models
 - Stochastic modeling of non-tidal atmospheric and oceanic de-aliasing (AOD) models
- Sensor data
 - Stochastic modeling of GPS data
 - Stochastic modeling of ACC, MWI, and LRI data
- Processing strategies
 - Optimization of relative weighting

Increasing

the **resolution**, **accuracy**, and **long-term consistency** of mass transport series from satellite gravimetry

Current processing scheme of GFZ RL06

GFZ

Helmholtz Centre

POTSDAM

Enhanced processing scheme of GFZ RL07p

6

Monthly GRACE-FO KBR/LRI solutions

- Three test years: 2019 2021
- Results in terms of residuals relative to a GRACE/GRACE-FO COST-G climatology

•	Solutions	Stochastic modelling of instrument data	Stochastic modelling of background models	Relative weighting with VCE <	Currently not for AOD parameters
	RL06.1	×	×	X	
	RL07p V1	\checkmark	×	\checkmark	
	RL07p	\checkmark	\checkmark	\checkmark	

GFZ

POTSDAN

Remarks on VCE: KBR solutions

- Convergence reached already after two iterations
- Additional empirical down-weighting of GPS leads to further slight improvements and particularly seems to stabilize the very low degree harmonics:
 - Currently applied: factor of 10
 - Ocean wRMS (cm EWH): 'KBR iter 3': 3.76 'KBR iter 4 + fac 10 GPS down': 3.52

Results: KBR - LRI

90

90

90

Results: OT- and AOD-VCM impact

EGU24-16789, G4.1, Murböck et al., murboeck@gfz-potsdam.de

20

0%

-20

-40

-60

 V1: OTVCM and AODVCM not included

filtered (300 km gaussian surface mas densities

GFZ

POTSDAM

20

0%

-20

-40

-60

Results: ocean wrms

2019 - 2021

GFZ

Main Conclusions

- Consistent long-term solutions
- More realistic formal errors
- Improved medium and high degrees
- Reduced noise by up to 40 % for small wavelengths

Outlook

- Including temporal correlations to the AOD VCM assessment
- Using kinematic orbits instead of GPS code and phase observations
- Further improving relative weighting

