
INJECTION & FRACTURE VISUALISATION INJECTION UNDER CONSTANT VERTICAL STRESS

1. Transparent cap attached to top flange to allow for 
fracture visualisation. 


2. Pressurisation of reservoir chamber, using the 
incremental pressure increase method (50 kPa/15 min).


3. Sample compression as the resulting action of gas 
pressurisation.


4. Gas breakthrough (± fracture patterns or pothole 
structures) determined by large ΔV recorded at the 
outflow ± fracture visualisation.
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Fig. 1. Geological CO2 sequestration in porous media.
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Findings / Implications: 
• An innovative experimental set-up allowing for the onset of surface crack formation to be captured during gas 

injection into consolidated and intact clay-rich geomaterials SECTION 3 & 4.

• Material compressibility is an important parameters controlling particle distance evolution which ultimately governs 

breakthrough pressure SECTION 5.

• Gas invasion into the tested materials occurred at lower pressures than traditionally recorded air-entry-values 

SECTION 5.

• Injection of non-wetting gas (N2) into consolidated clays results in the formation of large fracture patterns. 

Furthermore, heterogeneity is a controlling parameter in fracture pattern density SECTION 6.

• Increasing the fluid electrolyte concentration reduces desiccation cracking density SECTION 6.

Future / Ongoing Research: 
• Understanding the effects of 1) fluid electrolyte concentration, 2) disjoining pressure, 3) time-dependancy, 4) particle 

crushing, and 5) exposure to reactive fluids, have on the micromechanisms of failure in uncemented geomaterials.

Internal Nature of Fracture Patterns6
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3D
 Videos: Fig. 6a. Pressurised gas induced fractures. Material: silica silt:kaolinite clay 50:50 mass fraction.

FRACTURE PLANE

1. Sample held under vertical effective stress reached 
during consolidation.


2. Pressurisation of reservoir chamber, using the 
incremental pressure increase method (50 kPa/15 min).


3. Consolidation as the resulting action of gas 
pressurisation.


4. Gas breakthrough at higher N2 pressures then injection 
and visualisation method. Breakthrough determined by 
recording the change in ΔV at the outflow.

This research programme was started with the following objectives. 1) To evaluate changes in mechanical properties and 
determine the physical indicators of susceptibility, underlying the micromechanisms of failure (e.g., fracturing) of clay 
caprocks. 2) To develop and calibrate an experimental set-up to perform controlled non-wetting fluid injection experiments 
using a high-pressure uniaxial Consolidation & Fracture Visualisation Cell (CFVC) to macroscopically visualise the impact of 
physical indicators on the mechanical properties during fracture formation and pattern in uncemented geomaterials.

Fig. 6b. Desiccation cracking patterns of muscovite mica with different fluid electrolyte concentrations.
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1. Evaluate caprock CO2 seal integrity;

2. Test shallow seated and buried (less 

indurated), relatively high compressibility 
clay-rich caprock materials;


3. Understanding the influence bulk fluid 
p ro p e r t i e s ( e . g . , p H , T, P, i o n i c 
concentration c0, relative permittivity k’) 
have on clay microstructure.


4. To determine the micromechanisms 
underlying failure (e.g., fracture formation) 
at the pore-scale.R
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Gas Breakthrough & Fracture Visualisation in Uncemented Geomaterial 
- Implications for Geological CO2 Sequestration
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Mineralogy Composition
Specific 
Gravity 
[g/cm3]

Particle 
D50

[µm]

Plastic 
Limit 
[wp] 

Liquid 
Limit 
[wL]

Slurry Water 
Content [%]

Speswhite 
Kaolinite 


(Al2O3.2SiO2.2H2O) 2.65 3.3 0.32 0.64 1.0

Muscovite 
Mica KLAB (KF)2(AL3O3)3(SiO2)6 2.8 33.9 0.47 0.6 1.25

Silica (quartz) SiO2 2.605 22.9 0.23 0.34 0.45

Silica:Kaolin 
50:50 - 2.6275 10 0.25 0.45 0.65

Material Properties

Representative caprock building materials were selected to test our hypothesis that the physical indicators; particle-size 
distribution (clay vs silt), particle shape (platy vs grain), heterogeneity (clay-silt mixtures), clay microstructure (1:1 vs 
2:1) and differences in mechanical behaviour upon compression (i.e., compressibility) control breakthrough pressure and 
fracture formation. Samples are prepared by mixing dry powder of the raw material with fluid electrolyte concentrations 
0.01 M or 0.5 M NaCl. The reconstruction of raw material from slurry allows for controlled and exact compositions, ensuring 
repeatability of experiment design and systematic hypothesis quantification. Samples have a circular cross-section: 75 mm 
in diameter and a height 10-25 mm dependent on pre-consolidation stress.
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SAMPLE PRE-CONSOLIDATION

1. 1D mechanical OR pneumatic consolidation to target 
density, representative of deep geological repositories.


2. Strain rate and initial moisture content determined from 
oedometer compression tests. Time for sample 
swelling to stabilise, ensures drained conditions to 
simulate on site long-term effects.


3. Controlled N2 pressure increment and monitoring of 
sample volumetric deformation for stress-strain 
characterisation during N2 injection.
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Fig. 4b. INSET: Volumetric deformation of samples upon gas pressurisation pre-breakthrough.
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Fig. 4a. Pressurised gas injection example tests. Material: Kaolinite pre-consolidated to 500 kPa.
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Fig. 2. Schematic diagrams of test equipment.

Fig. 3. Workflow of gas injection methodologies.

Fig. 5. Material density and particle size display no empirical correlation to Pc*. In comparison, the more 
compressible and higher swelling potential the material the greater the Pc*.
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