

Air quality improvements can strengthen China's food security

Xiang Liu

School of Atmospheric Sciences Nanjing University

China's population and crop production

Demand: large population

- China's population exceeds 1.4 billion
- Grand challenge to feed its population

Supply: cereal production

 Cereal production surged until 2015 and then stabilized

What drives crop yield?

Environmental drivers

High air pollution levels

Exposure to particulate matter air pollution, 2019

Population-weighted average level of exposure to concentrations of suspended particles measuring less than 2.5 microns in diameter (PM2.5). Exposure is measured in micrograms of PM2.5 per cubic meter (μ g/m³).

Severe particulate pollution Nanjing, 2016

How does this high level of air pollution affect crop production in China?

Our World in Data

Crop exposure to air pollution

Liu et al., 2024. Nat. Food.

- Crops are exposed to high levels of ozone and aerosol pollution
- Further understanding of the relationship between air pollution and crop growth is needed

Air pollution affects crop growth

Ozone reduces yield

 Ozone injures plant cells, affects photosynthesis and reduces crop productivity

Aerosol impacts are complex

He et al., 2023

- Aerosols reduce direct radiation but increase diffuse radiation
- Diffuse radiation can benefit photosynthesis 5

Method

• Goal: To quantify the impacts of air pollution on crop production in China.

- Crop: maize, rice, and wheat
- Time: 2005 to 2019
- Statistical model:

log(SIF)

- = f(Ozone) + f(Aerosol)
- + f(Temperature) + f(Precipitation)
- + f(Cloud) + year + gridcell + ε

Solar-induced chlorophyll fluorescence (SIF)

is emitted by chlorophyll molecules with a wavelength of 650-800 nm when exposed to sunlight by plants

Theoretical relationship between SIF and yield

Observational relationship between SIF and yield

Guan et al., 2015

He et al., 2020

Response functions of ozone and aerosol – Maize

AOT40: Accumulated Ozone Exposure Over a Threshold of 40 ppb

Liu et al., 2024. Nat. Food.

AOD: Aerosol Optical Depth

Impacts of air quality improvements on SIF — Maize

Ozone: MDA8 to 60 μ g m⁻³

Aerosol: $PM_{2.5}$ to 35 μ g m⁻³

- Reducing ozone can lead to country-wide yield increases
- Reducing PM_{2.5} has varied impacts on yields with large regional differences

Effects of ozone and PM_{2.5} reductions on crop yields

- Meeting two air quality standards can increase 7.8%, 4.1%, and 3.4% yields for three crops
- Recent trends in air pollution may threaten maize and wheat yields

Liu et al., 2024. Nat. Food.

Impacts of air quality improvements on food security

Calorie intake (kcal per capita per day)

Calorie intake calculation:

$$Cal = \sum_{i=1}^{3} \chi A_i Y_i \eta_i (1 - \omega_i) E_i$$

- Meeting two air quality standards can significantly increase edible food production by 4.5%
- Priority should be given to ozone pollution mitigation

Liu et al., 2024. Nat. Food.

- Air quality improvements can significantly enhance crop production, but a smarter path will better benefit its food security
- 2. Some other factors are not considered, such as CO₂ and fertilizer
- Future studies are encourage to investigate other economically vital crops, conduct field experiments, and use process-based models to understand the biophysical mechanisms

THANK YOU!

Email: xliu21@smail.nju.edu.cn Website: https://xiangliu-github.github.io/ Paper link: https://www.nature.com/articles/s43016-023-00882-y Shareable paper link: https://rdcu.be/dEsCq