Assessing the Impact of Burst Overlap Interferogram of Sentinel-1 TOPS on Near-Fault 3D Displacement Modelling: A Case Study of the 6th February 2023 Mw7.8 and Mw7.5 Kahramanmaraş Earthquakes, Türkiye

*Muhammet Nergizci, ¹Milan Lazecky, ^{1, 2}Qi Ou, ³Christophe Magnard, ¹C. Scott Watson, ¹Jin Fang, ¹Andrew Hooper, ¹Tim J. Wright

¹COMET, Institute of Geophysics and Tectonics, School of Earth and Environment, University of Leeds, UK

²Global Change Institute, School of GeoSciences, University of Edinburgh, UK ³Gamma Remote Sensing AG, Worbstrasse 225, CH-3073 Gümligen, Switzerland

1.Background

- Türkiye experienced the two biggest devastating doublet earthquakes in its modern history, with Mw7.8 and Mw7.6, on February 6, 2023.
- The earthquakes created surface ruptures over 300 km along the East Anatolian Fault (EAF) and around 150 km along the Çardak-Sürgü Fault (ÇSF) segment, respectively.
- •Such ruptures leading to big phase gradients pose challenges for standard interferograms in detecting the total displacement and tracking surface ruptures in near fields.
- Second, InSAR measurements are not sensitive to the along-track (~North-South) component of the total displacement.
- •We utilized Double Difference Interferometry to overcome these obstacles, exploiting burst and subswath overlaps to extract along-track displacement more accurately and enhance the 3D displacement fields for the earthquakes that struck Kahramanmaraş on February 6th.

2.Subswath and Burst Overlap Interferometry (SBOI)

- Double Difference Interferometry leverages the spectral diversities within the burst overlap regions of Sentinel-1 TOPS acquisition mode [1]
- •The method is commonly used in coregisteration step of TOPS mode for stationary scenes, also known as Enhanced Spectral Diversity [2].
- •For nonstarionary scenarios, the method is sensitive to displacements in the along-track (azimuth) direction since range direction is cancelled out by double differencing [3].
- •Subswath overlaps can be also exploited for double differencing to observe along-track displacement. with different sensitivity levels, which we call as

	BOI	SBOI_Backward	SBOI_Forward
ΔfDC (Hz)	~4500	2695	~1435
Scale Factor (m/π)	0.244	0.385	0.735
Phase Ambiguity (m)	0.766	1.210	2.310
Table: Comparison spectral seperation and ambiguity band of overlap			

Before (Wrapped)

Figure: SBOI dataset before and after unwrapping.

SW3

Figure: Overlap regions of burst windows. Dark blues show burstoverlap regions, pink areas are forward-subswath overlap regions and green's are backward-subswath overlap regions.

(AOT) [4].

• SBOI are generated through

GAMMA Sofware.

• The scaling of phase to

displacement changes

therefore scaling factor is

calculated on a pixel-by-pixel

The wrapped SBOIs unwrapped

through Azimuth Offset Tracking

significantly in azimuth direction,

3. Coherence Investigation

- After the earthquakes, snowfall occurred around the earthquake region (mostly northern part), leading to decrease in coherence.
- •The coherence matrix of the ascending (014A) and descending (021D) frames helps us to observe the effect of snowfall on different Area of Interest (AOI).
- •This analysis facilitates the selection of the optimal SBOI pairs by optimizing coseismic coherence.

Figure: Estimated accuracy of ESD. The accuracy depends on coherence

the earthquakes damage.

•For the 021D (dashed turquoise), the pair of 2023-01-05/2023-03-06 exhibits higher coherence, while the optimal coherence is at pair of 2023-01-28/2023-03-05 for the 014A (dashed orange).

while the near fault zone continued to exhibit low coherence due to

Figure: Coherence map of 021D and 014A frames: Solid rectangles •Refined coherent SBOI illustrated as green color in the left figure, which indicate $\sim 35\%$ refinement compared to the nearest epochs.

5. 3-D Displacement Field, Strain and Slip

• We utilized SBOI's with Range Offset Tracking (ROT) from two ascending frames (014A, 116A) and two descending (021D, 123D) frames to generate 100 m resolution 3D displacements, with associted uncertainties.

Figure: 3-D deformation map and its uncertainties from ROT, SBOI within overlap regions and AOT outside of the overlaps.

• Uncertainties of the 3D show that the uncertainty of northward component is improved where SBOIs are available. Within the overlaps, the mean uncertainty is ~ 0.11 , while it reaches ~ 0.26 outside of the overlaps.

• Strike-slip calculated from east and north displacements

- The second invariant of the slip was calculated from a 30km median-filtered displacement map to highlight the fault rupture, by utilizing the SBOI dataset for this study.
- The samples along the faults show that the slip reach the 8.44 ± 1.29 m on CSF, while the peak slip is 7.22 ± 1.73 m on EAF.

Figure: Slip magnitude samples along the faults: blues indicate the samples on ÇSF, while reds show the samples along the EAF.

4. Profiles Along the Near Fault

red lines indicate the fault ruptures.

represent AOIs, dashed rectangles denote the frame traces, and the

Figure: (Left) N-S displacement from SBOIs after 3D decomposition: Red color indicates the northward motion, while blue shows southward motion. Green dash lines represent profile examples, while white-black background is the DEM. (Rigth) Profile examples within the SBOIs along the EAF and ÇSF.

References

regions of S-1 TOPS mode.

[1] Grandin, Raphael, et al. "Three-dimensional displacement field of the 2015 Mw8. 3 Illapel earthquake (Chile) from across-and alongtrack Sentinel-1 TOPS interferometry." Geophysical Research Letters 43.6 (2016): 2552-2561. [2] Prats-Iraola, Pau, et al. "TOPS interferometry with TerraSAR-X." IEEE Transactions on geoscience and remote sensing 50.8 (2012). [3] Yagüe-Martínez, Néstor, et al. "Interferometric processing of Sentinel-1 TOPS data." IEEE transactions on geoscience and remote

[4] Nergizci, Muhammet, et al. 'Along-Track Displacement of Mw 7.8 and 7.6 Kahramanmaraş Earthquakes from Sentinel-1 Offset Tracking and Burst Overlap Interferometry'. Procedia Computer Science, (*In-Press*).

SPONSORED BY

Get in Touch eemne@leeds.ac.uk

6. Outlook and Conclusions

Distance (km)

•SBOI provides precise along-track displacement, effectively addressing a current major drawback of InSAR.

•It also facilitates the use of subswath overlaps, expanding the coverage area beyond that of burst overlaps.

- •The coherence matrix of different AOIs can help observe non-tectonic effects, such as snowfall, on the coseismic coherence, thereby enabling the extraction of more robust phase information in both the near and far field.
- Furthermore, SBOI contributes to enhancements in 3-D displacement maps and slip magnitude, alongside improvements in N-S displacement profiles in the near fault zone.

sensing 54.4 (2016): 2220-2234.

After (Unwrapped)