Evaluating the application of deep-learning ensemble sea level and storm surge forecasting in the Baltic Sea
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— J HIDRA?2 1s a second-generation deep-learning model W In this study, HIDRA2 has been run for one complete oy
specifically designed to predict sea surface height year, spanning from April 2023 to March 2024. ﬁ Wind i, @)+ g
(SSH). Input data are encoded using three distinct A
encoders. The resulting outputs undergo recalibration,
fusion with past 72-hour SSH data, and regression
within the fusion-regression block to generate hourly
predictions of SSH for the subsequent 72 hours.
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Jd For further comparison, HIDRA's performance is N

assessed against three datasets: Ll

1) outputs from the NEMOgi; model run, an | ‘ /\/\/\/\N

. . . Tide Tidal Fusion-regression

operational hydrodynamical model with focused WWW on72h "> | encoder block = predicted SSH
__ domain on the study area. e
*Rooi A single forecast run of the HIDRA2 model generates a 2,3) original and detide SSH data from the Baltic Sea ,\/\,J‘M SSH+Tide _ SSH
O The study focuses on 72-hour SSH time series for each of the five locations. ~ Physics Analysis and Forecast, Copernicus Marine MWW 72 encoder 1 Key reference:
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In summary, HIDRA?2 outperforms other selected models and products in the study area

d HIDRA2's 72-hour forecast, with an averaged RMSD [ In the context of storm surges, comparisons were made
of 0.06 and a correlation coefficient of 0.97, along with based on instances where observed SSH equaled or
a standard deviation closer to observational values, exceeded the 90th percentile threshold of sorted values
| proves to be more accurate than forecasts from within the study period (0.65S m, averaged for all 5
— Roomassaarc:Obs, SSH__ =024, & STD = 0.23 NEMOgr and CMS products. stations in the study area).
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