

A meso-scale simulation of future household water demand under climatic and socio-economic scenarios in Thuringia

Simon Werner¹, Christian J. A. Klassert¹, Bernd Klauer¹ and Erik Gawel¹

(1) Helmholtz Centre for Environmental Research UFZ, Department of Economics, Leipzig, Germany

Background

- heterogenous

Figure 1: Meso-scale model of regional water demand

(1) $\Delta W_d^T = W_d^T seas +$	$W_d^{T temp} + W_d^{T wend} + W_d^{T pers}$	C
(2)	$W_d^T = W_a^T ^{base} + \Delta W_d^T$	
		V

consumption in from regional authorities, *Base Factors*: income, household type, building type, age from Mikrozensus, and price data from BDEW.

-0,12***

-0,10

Panel: n = 29, T Panel: n = 7, T

= 1-7, N = 140 12-24, N = 140

0,04

0,36***

0.10051

0.36***

ln_av_inc

moving averages.

	Seasonal model: $y = W_d^T$;	
	No BWU	$\begin{array}{l} BWU \\ (\ T_d^{max} < 0 \) \end{array}$
(Intercept)	105,89***	4,21*
TXK0	0,74***	0,44***
<i>TXK25</i>	0,77***	0,56***
ln_SWC	-3,94***	-1,25***
we_dum	13,80***	13,85***
auto_co		
fak1, fbk1, fak2, fbk2	1,61*, -2,08***, 0,23, -1,50***	-2,70***, -3,15*** 0,21, -1,27***
Residual standard error	16.,46	13,64
Degree freedom	4327	4320
(Multiple) R-squared	0.29	0.51

0.33***

0.44***

-0.86**

12.74***

1,15***, -1,31**, 0,24,

0,17**

1,15***

13,2

4324

0,39

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '' 0.1 '

A s	patial
iden	tify fu
• We	find
depe	ender
An	imple

[HS5.3.1] Coupled human water systems: data-driven and socio-hydrological approaches to support water management, adaptation and governance

Take Home

ally disaggregated model of household water demand allows to uture regional water use conflicts

that temporal patterns of household water demand are weather nt and that water demand increases under strong climate change

plementation of econometric base water use can inform socioeconomic impacts of **demand management** in different socio-climatic futures