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I - INTRODUCTION

In this study, we introduce a method for detecting eddies using deep learning, which we evaluate against the traditional Py-Eddy-Tracker algorithm within the framework of dynamical Observing System Simulation Experiments.

Our reference standard comprises eddy maps produced by an unconstrained model utilizing Py-Eddy-Tracker. The goal is to train a deep learning model on data from a degraded model to accurately replicate the eddy

patterns identified by the free-run model. This approach serves as a means to assess the quality of data assimilation from degraded models and to gauge the impact of such assimilation on eddy detection capabilities.

What are eddies?
• Swirling masses of water formed by ocean currents. 

• Range from small-scale features to large vortices 

spanning hundreds of kilometers.

Types : 

• Cyclonic eddies: Cooler water, spin counterclockwise in 

the Northern Hemisphere.

• Anticyclonic eddies: Warmer water, spin clockwise in the 

Northern Hemisphere.

Importance of eddy detection and 
forecast: 
• Climate impact: Influence global climate patterns by 

transferring heat and carbon between ocean layers.

• Marine Ecosystems: Affect nutrient distribution, essential 

for marine biodeversity and fisheries.

• Energy transfer: Play a crucial role in the mixing and 

energy transfer across ocean basins.

Assessing data assimilation techniques with deep learning-based eddy detection

II- EDDIES, THEIR DETECTION AND LIMITATIONS

IV – PROBLEM FORMULATION AND PARAMETERS
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• We aim to detect eddies of the free-run model using degraded model data. Eddy detection using deep learning is frequently linked with U-shaped

architectures, since their detection can be formulated as a semantic segmentation problem.

• Each pixel of the output eddy maps is to be classified into one of four classes: Non-Eddy, Cyclonic Eddy, Anticyclonic Eddy, or Land (Land class is

introduced to handle nan values).

• Our U-Net architecture takes SST, SSH, U and V maps from the degraded model and produces corresponding eddy maps with the same spatial

dimensions, enabling direct pixel-to-pixel mapping for accurate eddy detection.

• We split our dataset into training (70%), test (15%) and validation (15%), and use a weighted cross-entropy loss to tackle class imbalance
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• C is the number of classes
• 𝑦𝑖,𝑐 is a binary indicator for observation i being of class c

• 𝑦𝑖,𝑐 is the predicted probability of observation i being of class c.

• 𝑤𝑐 is the weight for class c.

• The batch size for training is 32, and 16 for validation and test, the training was completed over 65 epochs, with a learning rate of 7,5e-4.

Fig 7: UNET architecture

Fig 10 : Example sea surface 
temperature map with true and 

predicted eddies, from test dataset.

Fig 9  : Example of categorical difference map, free model as truth
and unet predictions on degraded model, from test dataset.

Deep learning techniques have demonstrated skill in emulating the eddy patterns observed in the unconstrained model by utilizing data from the assimilated model, outperforming the standard algorithm in terms of accuracy.

To broaden the scope of our insights on the applicability of these findings, future work will extend the study across multiple years and various oceanic regions. Furthermore, we are currently developing an eddy-tracking

methodology informed by this deep learning approach. Preliminary applications of this eddy detection framework to operational models have yielded promising outcomes. This research paves the way for ongoing

improvements in the field of eddy detection and the enhancement of ocean modeling capabilities through the integration of data assimilation and advanced deep learning techniques.

Fig 1 : Ocean eddy. Credits :

Provided by the SeaWiFS Project, 
NASA/Goddard Space Flight 
Center, and ORBIMAGE

III – SETUP AND OBJECTIVE

Traditional Sea level anomaly-based algorithms:
• SLA based algorithms, such as py-eddy-tracker, detect closed               

contours of SLA levels. 

• Interpolation from 1D tracks to 2D maps induces a noisy 

reconstruction of the SLA field, and thus error in recovering the 

eddy field.

Objective : overcome the limitations of traditional 
algorithms using deep learning.

Truth SLA Altimetry tracks Reconstruced SLA

Data:
Two high resolution (1/12°) models from a

dynamical Observing System Simulation

Experiments (OSSE):

• Free unconstrained model: a free-run

ocean circulation model representing the

‘truth’.

• Degraded model: ocean circulation model

constrained by synthetic observations from

the ‘truth’ model mimicking

the altimetry network through data

assimilation techniques, to approximate

the state

of the ’truth’ model

Variables : SSH, SST, U and V currents.

Focus region : Gulf Stream

Year of study : 2015 (daily data)

Anticyclonic eddies: 

High sea level

Cyclonic eddies:

Low sea level

Limitations:

• Classical SLA-based eddy detection algorithms suffer from 

the low coverage of the current altimetry network.

• Interpolation from 1D tracks to 2D maps induces a noisy 

reconstruction of the SLA field, and thus errors in recovering 

the eddy field.

Fig 4 : Illustration of the impact of satellite altimetry network on the 

reconstruction of SLA (From Stegner et al. 2021)

Fig 3 : SSHA map and eddies. 
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Fig 6: Categorical difference map between eddies
detected with py-eddy-tracker on the free-model and
the degraded model, and possible errors to overcome.
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V – RESULTS

Anticyclonic 

Eddy

Cyclonic 

Eddy
Non-Eddy

UNET 83,95% 85,10% 91,39%

Py-Eddy-

Tracker
48,75% 45,70% 84,74%

Table 1 : Accuracy for each class over the test 

dataset. We achieve high pixel-wise accuracy for 

eddy classes.

Fig 8 : Training and validation loss over 

epochs: no overfitting

When attempting to recover the ‘true’ eddy field from the free model using

data from the degraded model, various types of errors can occur, making the

accurate reproduction of the true swirling landscape challenging.

Fig 5 :U, V, SSH and SST 
from degraded model 
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Fig 2 : Eddies and sea level

Fig 11 : Distribution of all eddy (cyclonic and anticyclonic) sizes

with density estimation, for the test dataset.

Deep learning model performance Visual analysis of the predictions Statistical analysis of detected eddies

Anticyclonic eddies that
shed off the Gulf Stream  
with visible cold cores on 

SST map.

Input: U, V, SSH, SST Output: Eddy map


