Supplementary Material Reference

- 1. Benavides, S. J., Deal, E., Rushlow, M., Venditti, J. G., Zhang, Q., Kamrin, K., & Perron, J. T. (2022). The impact of intermittency on bed load sediment transport. Geophysical Research Letters, 49(5), e2021GL096088.
- 2. Botev, Z. I., Grotowski, J. F., & Kroese, D. P. (2010). Kernel density estimation via diffusion.
- 3. Data obtained from the JHTDB at <u>http://turbulence.pha.jhu.edu</u>
- particle movement under turbulent flow conditions. Science, 322(5902), 717-720.
- Geophysical Research: Earth Surface, 119(3), 464-482.
- transport. Physics of Fluids, 24(11).
- water flows. Journal of engineering mechanics, 133(4), 422-430.
- 91-113.

10.Ross, S. M. (2014). Introduction to probability models. Academic press.

4. Diplas, P., Dancey, C. L., Celik, A. O., Valyrakis, M., Greer, K., & Akar, T. (2008). The role of impulse on the initiation of

5. Fan, N., Zhong, D., Wu, B., Foufoula-Georgiou, E., & Guala, M. (2014). A mechanistic-stochastic formulation of bed load particle motions: From individual particle forces to the Fokker-Planck equation under low transport rates. Journal of

6. Lee, H., Ha, M. Y., & Balachandar, S. (2012). Work-based criterion for particle motion and implication for turbulent bed-load

7. Man, C., & Tsai, C. W. (2007). Stochastic partial differential equation-based model for suspended sediment transport in surface

8. Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. In IAHSR 2nd meeting, Stockholm, appendix 2. IAHR.

9. Paintal, A. S. (1971). Concept of critical shear stress in loose boundary open channels. Journal of hydraulic research, 9(1),

Supplementary Material Method

A.Work-based Criterion (Lee et al., 2012)

1. Force balance equation (Tangential direction)

1.1.Dimensional

$$1.1.1.(m_{*p} + \frac{1}{2}m_{*f})\frac{dv_{*t}}{dt_*} = F_{*D}(t_*)(\cos\theta - \mu\sin\theta) + F_{*L}(t_*)(\cos\theta - \mu\sin\theta) + F_{$$

1.2.Dimensionless [force scale: $(m_{*p} - m_{*f})g_*$; length scale: d_* ; time scale: $\sqrt{d_*/g_*}$]

$$1.2.1.\frac{dv_t}{dt} = \frac{2(S_G - 1)}{2S_G + 1} \left(F_e(t) + F_{cr} \right);$$

1.3.Integrating 1.1 to obtain $v_t(t)$

$$1.3.1.v_t(t) = \frac{2(S_G - 1)}{2S_G + 1} \left[\int_0^t F_e(\tau) d\tau - \int_0^t S(\tau) d\tau \right], \text{ where}$$

2. The work done by effective hydrodynamic force F_{ρ} (Dimensionless)

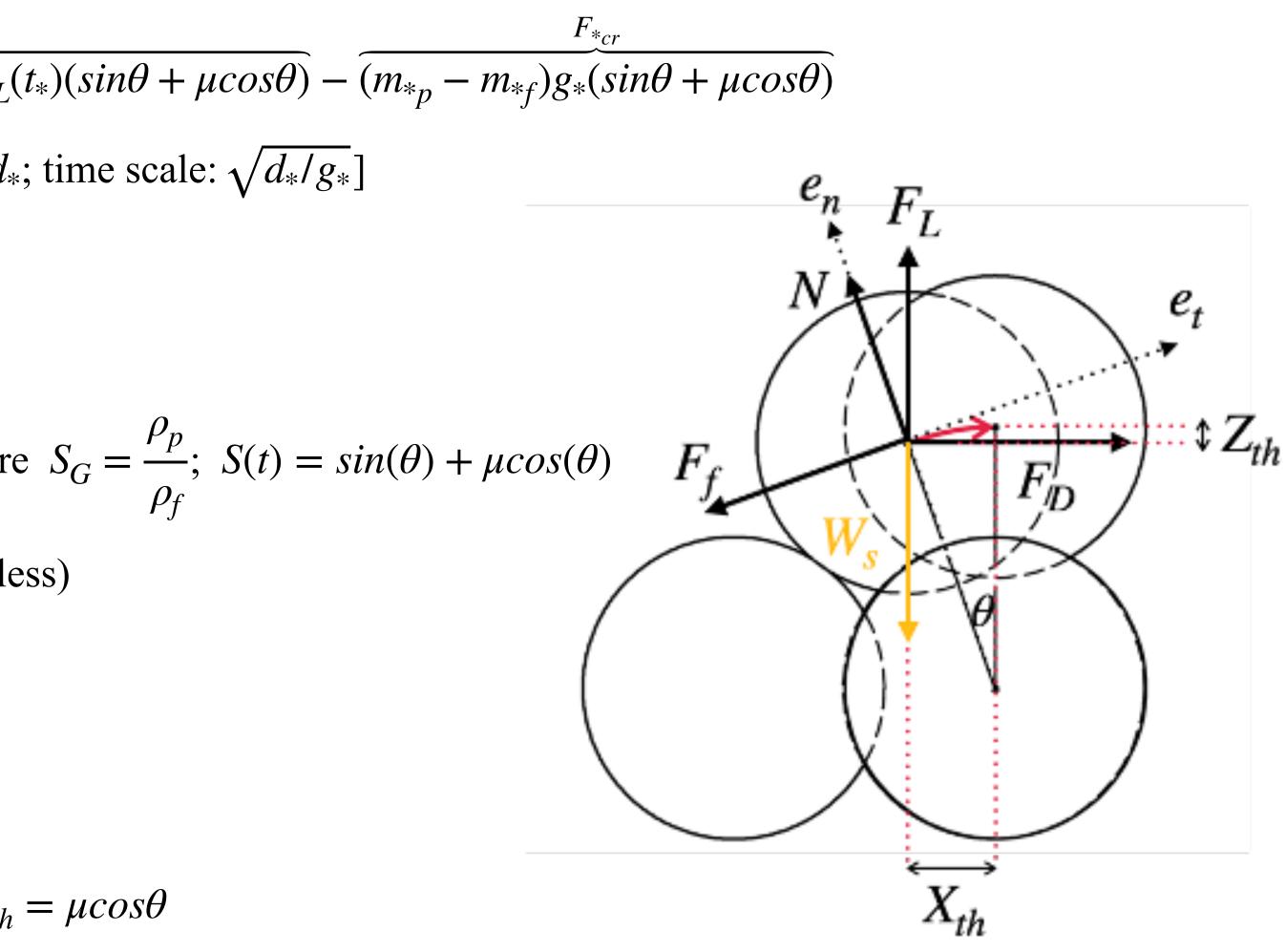
$$2.1. \int_0^t F_e(\tau) v_t(\tau) d\tau = \frac{2(S_G - 1)}{2S_G + 1} \left[\frac{I^2(t)}{2} - \alpha S_0 \int_0^t F_e(\tau) \tau d\tau \right]$$

3. The work needed to escape the pocket (Dimensionless)

- 3.1.Resistant work from Gravity along vertical: $Z_{th} = sin\theta$
- 3.2.Resistant work from Friction force along streamwise: $\mu X_{th} = \mu cos\theta$
- 3.3. Total resistant work: $Z_{th} + \mu X_{th}$

4. Equating 2.1 and 3.3 And assuming $T_B \ll$ time scale of particle motion; therefore, $\alpha = 1$ and $\theta = \theta_0 = constant$

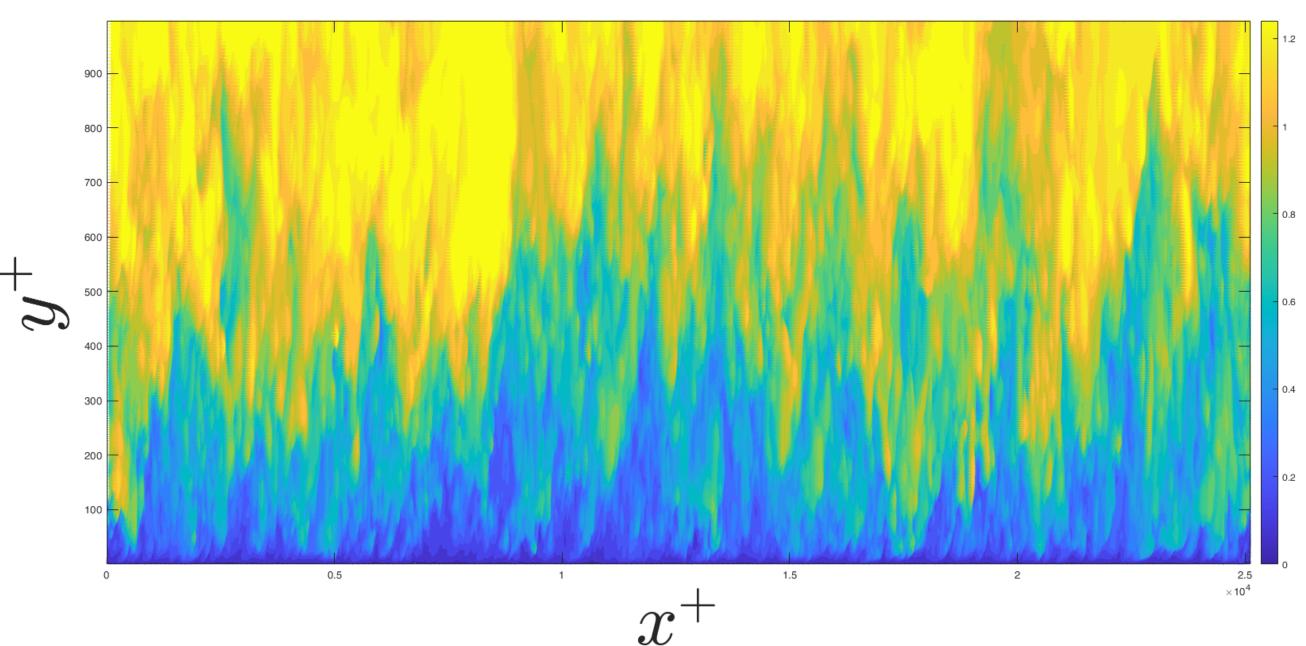
4.1.
$$I^2(1 - F_{cr}/F_e) \approx \frac{2S_G + 1}{S_G - 1}(Z_{th} + \mu X_{th})$$
, where $I = F_e \cdot T_B$



B. Johns Hopkins Turbulence Databases

- 1. Direct Numerical Simulation (DNS) data set with $Re_{\tau} \approx 1000$
- 2. Domain Size: $[8\pi h, 2h, 3\pi h]$, where $h = \nu/u_* = 1.0006 \cdot 10^{-3}$
- 3. Grid points: $2048 \times 512 \times 1536$
- 4. Time stored: [0, 25.9935]
- 5. Selected Δt : 0.01

(Data obtained from the JHTDB at <u>http://turbulence.pha.jhu.edu</u>)



$$(x, y, z_0, t_0)$$

C. Poisson Process

1. General description

1.1.One of the most widely-used counting process

1.2.Can be used to count the No. occurrence of certain events given a constant rate λ

2. Poisson distribution

 $k \in \{0, 1, 2, 3, ...\}$ $2.2.E(N) = Var(N) = \lambda \tau$

 $2.3.N_1 + N_2 + \ldots + N_n \sim P(\lambda_1 + \lambda_2 + \ldots + \lambda_n)$ as all X_i are independent

3. Definition of the Poisson process $\{N(t), t \in [0, \infty)\}$ with given rates λ : 3.1. N(0) = 0

3.2. N(t) has independent increments

3.3. The number of arrivals in any interval of length $\tau > 0$ follows $P_N(\lambda \tau)$

3.4. The inter-arrival time distribution is $f_X(X = t) = \lambda exp(-\lambda t)$

4. Second definition of the Poisson process with a very short interval of length dt

4.1. $P(N(dt) = 0) = 1 - \lambda dt + o(dt)$

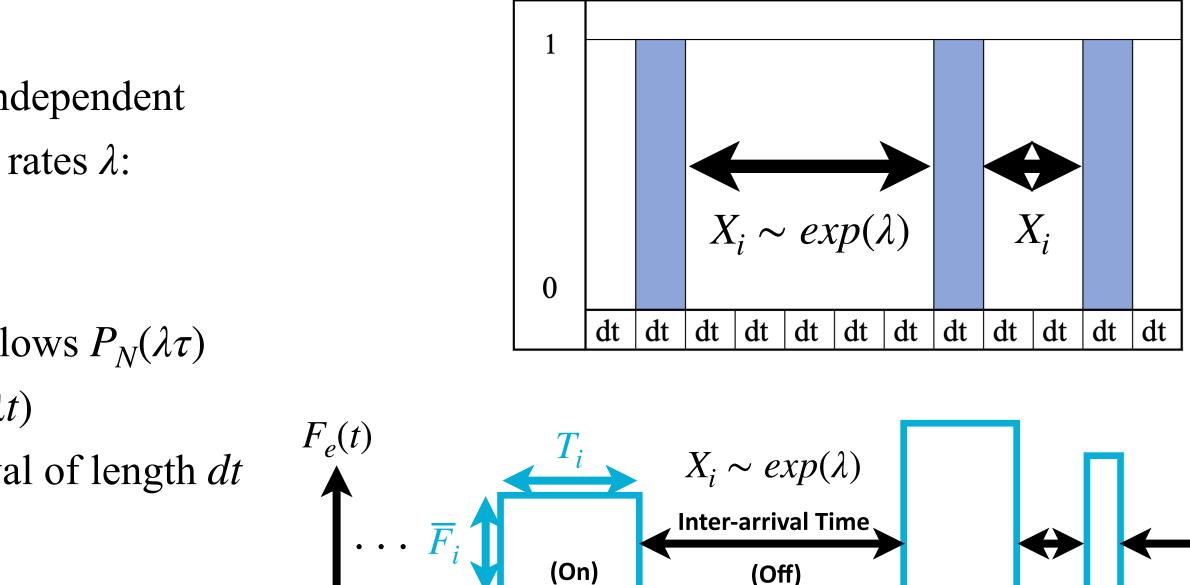
4.2. $P(N(dt) = 1) = \lambda dt + o(dt)$

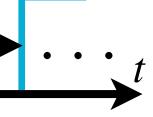
4.3. $P(N(dt) \ge 2) = o(dt)$

5. Simulating random arrival of impulse event by using 4.2

5.1. The probability of occurrence during dt is λdt . Here, λ is defined as $\Sigma T_i/Simulation Time$ 5.2. If the event occur at a specfic *dt*, we assign it as 1; otherwise we assign it as 0. 5.3.A train of spikes forms!

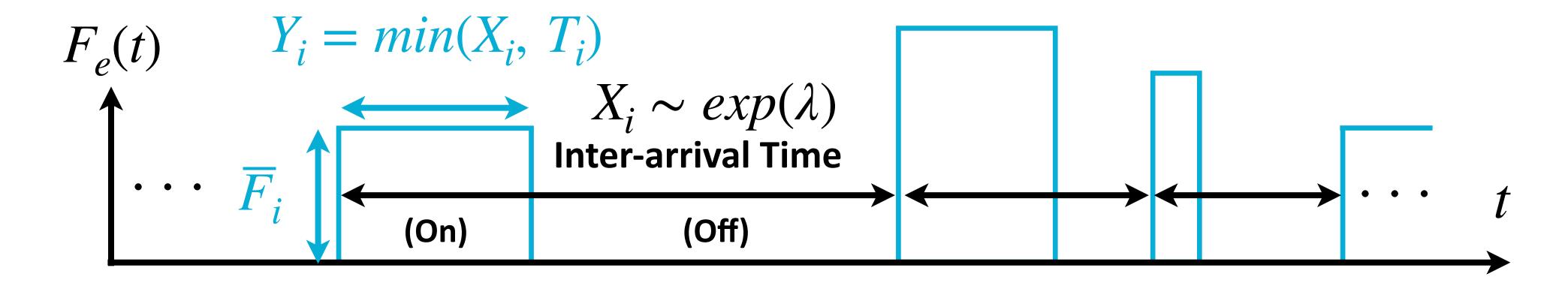
2.1.A discrete random variable N follows a Poisson distribution $N \sim P(\lambda \tau)$ if its PMF is given by $P_N(N = k) = \frac{e^{-\lambda \tau} (\lambda \tau)^k}{1 + 1}$ for





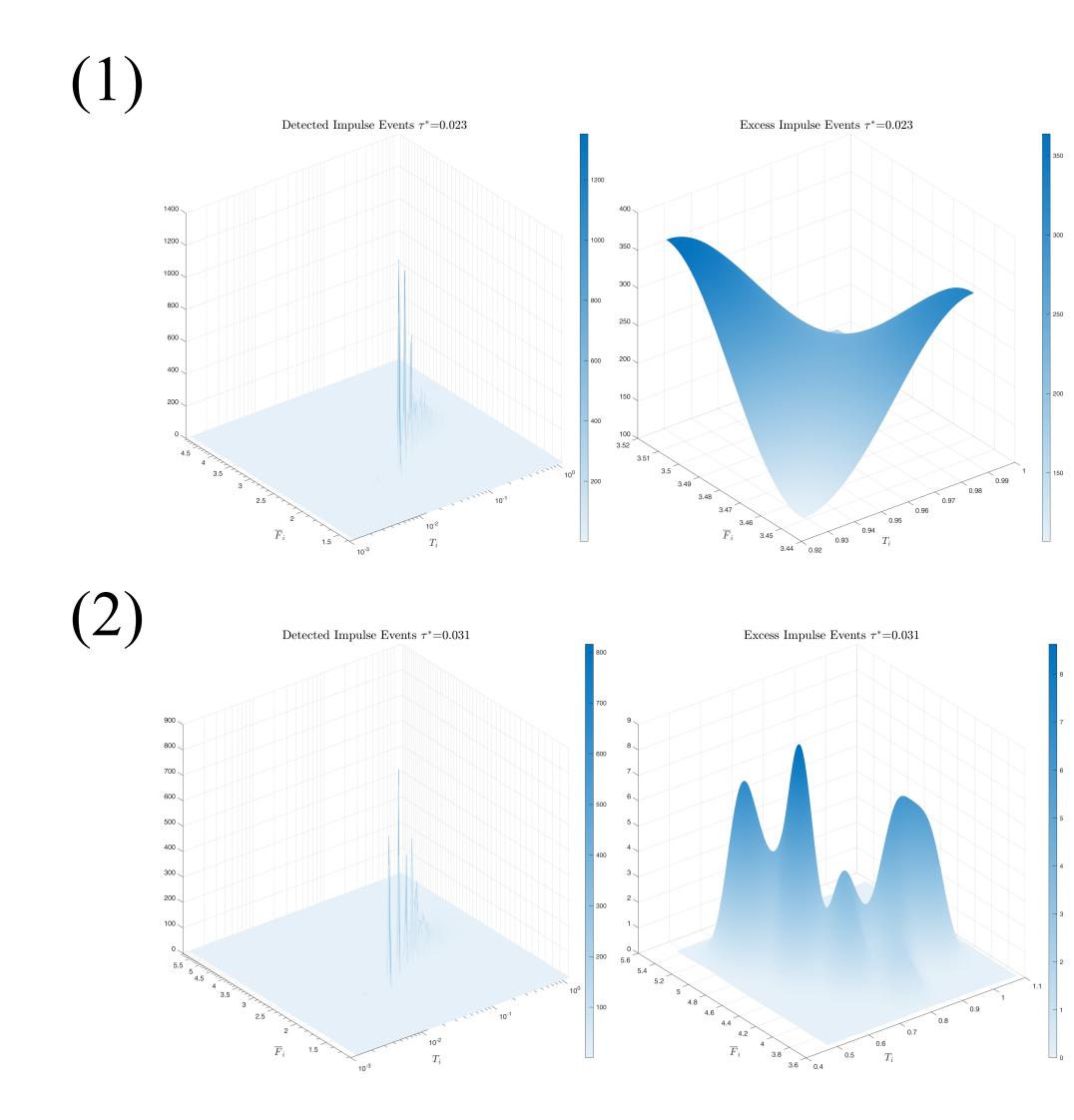
D.Alternating Renewal Process (Ross, 2014)

1. A generalization of the Poisson process 2. Assuming $\{Y_i\}$ to be on state, whereas $\{Z_i\}$ to be off state $2.1.X_i = Y_i + Z_i \sim P_X(t) = \lambda exp(-\lambda t)$ $2.2.Y_{i} = min(X_{i}, T_{i})$

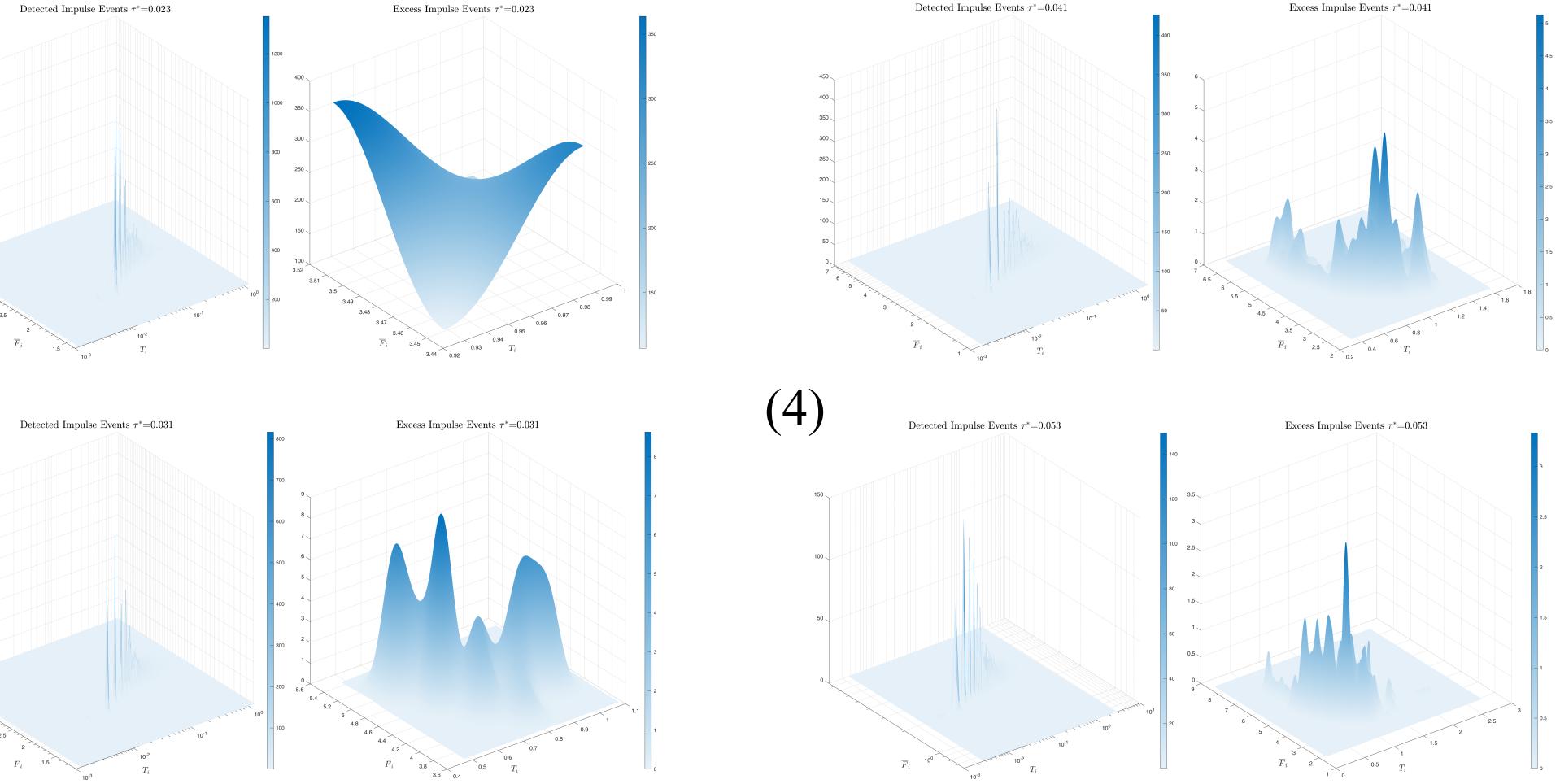


Supplementary Material Preliminary Result

Joint PDF of \overline{F}_i and T_i at different τ^*



(3)



Joint PDF of \overline{F}_i and T_i at different τ^*

