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1. Force balance equation (Tangential direction) 
1.1.Dimensional 

1.1.1.   

1.2.Dimensionless [force scale: ; length scale: ; time scale: ] 

1.2.1. ;  

1.3.Integrating 1.1 to obtain  

1.3.1. , where  ;   

2. The work done by effective hydrodynamic force  (Dimensionless) 

2.1.  

3. The work needed to escape the pocket (Dimensionless) 
3.1.Resistant work from Gravity along vertical:  
3.2.Resistant work from Friction force along streamwise:  
3.3.Total resistant work:  

4. Equating 2.1 and 3.3 And assuming time scale of particle motion; therefore,  and   

4.1. , where 

(m*p +
1
2

m*f )
dv*t

dt*
=

F*e(t*)

F*D(t*)(cosθ − μsinθ) + F*L(t*)(sinθ + μcosθ) −
F*cr

(m*p − m*f )g*(sinθ + μcosθ)

(m*p − m*f )g* d* d*/g*
dvt

dt
=

2(SG − 1)
2SG + 1 (Fe(t) + Fcr)

vt(t)

vt(t) =
2(SG − 1)
2SG + 1 [∫

t

0
Fe(τ)dτ − ∫

t

0
S(τ)dτ] SG =

ρp

ρf
S(t) = sin(θ) + μcos(θ)

Fe

∫
t

0
Fe(τ)vt(τ)dτ =

2(SG − 1)
2SG + 1 [ I2(t)

2
− αS0 ∫

t

0
Fe(τ)τdτ]

Zth = sinθ
μXth = μcosθ

Zth + μXth

TB ≪ α = 1 θ = θ0 = constant

I2(1 − Fcr /Fe) ≈
2SG + 1
SG − 1

(Zth + μXth) I = Fe ⋅ TB

A.Work-based Criterion (Lee et al., 2012) 
 



B.Johns Hopkins Turbulence Databases

1. Direct Numerical Simulation (DNS) data set with  
2. Domain Size: [ ], where  
3. Grid points:  
4. Time stored:  
5. Selected  
(Data obtained from the JHTDB at http://turbulence.pha.jhu.edu)

Reτ ≈ 1000
8πh, 2h, 3πh h = ν/u* = 1.0006 ⋅ 10−3

2048 × 512 × 1536
[0, 25.9935]

Δt : 0.01

http://turbulence.pha.jhu.edu


1. General description  
1.1.One of the most widely-used counting process 
1.2.Can be used to count the No. occurrence of certain events given a constant rate  

2. Poisson distribution  

2.1.A discrete random variable  follows a Poisson distribution  if its PMF is given by  for 

 
2.2.  
2.3.  as all  are independent 

3. Definition of the Poisson process  with given rates :  
3.1.  
3.2.  has independent increments 
3.3. The number of arrivals in any interval of length  follows  
3.4. The inter-arrival time distribution is  

4. Second definition of the Poisson process with a very short interval of length  
4.1.  
4.2.  
4.3.  

5. Simulating random arrival of impulse event by using 4.2 
5.1.The probability of occurrence during  is . Here,  is defined as  
5.2.If the event occur at a specfic , we assign it as 1; otherwise we assign it as 0. 
5.3.A train of spikes forms!

λ

N N ∼ P(λτ) PN(N = k) =
e−λτ(λτ)k

k!
k ∈ {0,1,2,3,...}
E(N) = Var(N) = λτ
N1 + N2 + . . . + Nn ∼ P(λ1 + λ2 + . . . + λn) Xi

{N(t), t ∈ [0, ∞)} λ
N(0) = 0
N(t)

τ > 0 PN(λτ)
fX(X = t) = λexp(−λt)

dt
P(N(dt) = 0) = 1 − λdt + o(dt)
P(N(dt) = 1) = λdt + o(dt)
P(N(dt) ≥ 2) = o(dt)

dt λdt λ ΣTi /Simulation Time
dt

C. Poisson Process 
 

Xi ∼ exp(λ) Xi

⋅ ⋅ ⋅
Xi ∼ exp(λ)

t
Inter-arrival Time

Ti

Fi⋅ ⋅ ⋅

Fe(t)

(Off)(On)



1. A generalization of the Poisson process 
2. Assuming  to be on state, whereas  to be off state 

2.1.  
2.2.

{Yi} {Zi}
Xi = Yi + Zi ∼ PX(t) = λexp(−λt)
Yi = min(Xi, Ti)

D.AlternaIng Renewal Process (Ross, 2014)

⋅ ⋅ ⋅
Xi ∼ exp(λ)

t
Inter-arrival Time

Yi = min(Xi, Ti)

Fi⋅ ⋅ ⋅

Fe(t)

(Off)(On)
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Joint PDF of  and  at different Fi Ti τ*
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