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Supplementary 0. Emission,
transport, and deposition of aerosols
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Supplementary 1. Dust layer in
polar ice core




Supplementary 2. Dust aggregates in deep EDC ice

SEM images of aggregates in EDC deep ice
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Supplementary 3. Ice grain size
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Supplementary 4. Relative abundance
of element-bearing particle number

Relative abundance of elemental particles by period
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Supplementary 5. Theoretical
ognormal size distributions of aerosols
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Figure 1: Theoretical lognormal size distributions of aerosol particles measured by spICP-MS displayed as (A) a
function of number concentration and (B) volume/mass. Figure adapted from Seinfeld and Pandis 2006.
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