

Are we underestimating eddy—wave interaction in the Mediterranean Sea? SORBONNE Robin Rolland¹, Pascale Bouruet-Aubertot¹, Yannis Cuypers¹, Anthony Bosse², Elvira Pulido², Anne Petrenko², Chloé Goret¹, Sandra Nunige², Louise Rousselet¹, Stéphanie Barrillon¹, Maristella Berta³, Maxime Arnaud², Milena Menna⁴, Massimo Pacciaroni⁴, Roxane Tzortzis⁵, Bàrbara Barceló-Llull⁵, Francesco d'Ovidio¹, Gérald Grégori², Andrea Doglioli² ¹LOCEAN-IPSL, Sorbonne University (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, Paris, France - ²Mediterranean Institue of Oceanography, Aix Marseille University, Université de Toulon, CNRS, IRD, Marseille, France ³National Research Council, Institute of Marine Sciences, Italy - ⁴National Institute of Oceanography and Applied Geophysics, OGS, Italy - ⁵IMEDEA (CSIC-UIB), Esporles, Spain

Context and highlights

- The Mediterranean Sea is an oligotrophic region with very low turbulence levels except in a few dynamically energetic areas such as straits or boundaries (Ferron et al., 2017)
- Turbulence mainly comes from internal gravity wave breaking.

Med

- In the Mediterranean Sea, IGWs are principally generated by the atmospheric forcing at the base of the mixed-layer.
- Eddy-wave interactions are an important source of energy injection at depth through wind-induced near-inertial wave (NIW) trapping by anticyclonic eddies.
- However, in the Mediterranean Sea there are few evidences of this process and in large mesoscale permanent structures such as Cyprus eddy (Cuypers et al., 2012; Lelong et al., 2020).
- During the BioSWOT-Med cruise (<u>https://doi.org/10.17600/18002392</u>), 2 consecutive storms generated strong NIWs trapped within an intense (Ro ~ 1) mesoscale anticyclonic eddy (D \sim 30 km), typical of the Mediterranean Sea.
- NIWs propagation at depth generated intense turbulence levels until 250 m, that contrast with very low turbulence levels in the frontal and cyclonic areas.
- NIW generation, characteristics and vertical energy propagation are estimated from in-situ data (SADCP, drifters, CTD) and reanalyzes data.

PRE-VALIDATED SWOT DATA

All SWOT data are pre-validated L3 product version 0.3

EGU Vienna 14–19 April 2024

part of the front only

References