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PRELIMINARY RESULTS

To understand and mitigate climate change, we require high-resolution climate projections, especially when investigating 
impacts on a local scale. This work is focused on developing models for statistical downscaling of climate model outputs for 
Danish hydrology by integrating advanced deep learning and computer science techniques. We present a Diffusion Model 
[1,2] tailored for generating high-resolution (2.5 km x 2.5 km) climate variables relevant for hydrological models: precipitation, 
evaporation, and temperature.

Our approach is inspired by advancements made in Computer Vision, specifically in the areas of latent image generation and 
conditional diffusion models [3,4]. It further incorporates multi-channel climate data and geographical features to improve 
model accuracy and stability. The model attempts to map between two reanalysis products, ECMWF Reanalysis v5 (ERA5) [5] 
and the DANish atmospheric ReAnalysis (DANRA) [6], as a proof of concept, and future work will focus on creating a 
synchronized training dataset between DANRA and realisations from the Regional Climate Model ensemble EURO-CORDEX [7], 
to develop a model for actual climate projection downscaling. 

This work is part of a broader effort to narrow the gap between global climate projections and local-scale analysis. It covers 
the initial phase, where future advancements will focus on integrating this model with RCM and possibly GCM outputs instead 
of reanalysis data, to explore ensemble downscaling methods. Our end-goal is to establish a robust pipeline for translating 
global climate projections into more actionable local climate statistics.
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Generative diffusion models [1] [2] work by computing a forward 
diffusion process by iteratively adding gaussian noise with cosine 
sampling, then learning the reverse diffusion process with a U-
Net, and finally sampling through iterative denoising of random 
noise.

ON THIS MODEL
An ongoing effort is currently underway to speed up the training 
process through the implementation of a Latent Diffusion 
Model [4]. Alongside this, the conditioning will be modified to 
incorporate a larger geographical and temporal domain for 
capturing large-scale atmospheric dynamics. 

ON NEXT STEPS
The immediate next work will focus on generating a synthetic 
synchronised dataset between select EURO-CORDEX realisations 
and DANRA, to create a training dataset useful for making climate 
projection downscaling – for single models and full ensembles.

Loss function
• Signed Distance Function for 

weighted loss 
• Hybrid loss [6] to capture 

multi-modality
𝐿'()*+, = 𝐿-./012 + 𝜆𝐿31)

Data split
• Training: 9 years (1991-1999)
• Validation: 1 year (2000)
• Test: 100 randomly 

selected dates in 
2001-2005

Data randomly shifted 
(geographically) for 
stability

Qualitative
Predictions are masked 
with a land-sea mask to 
omit pixels over sea during 
evaluation.

Quantitative
Distributions of generated and 
evaluation images (masked to 
land only)
Not capturing the mean:
May be an issue with 
standardization in code.
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Extended domains
To capture larger atmospheric 
dynamics, especially in the North 
Atlantic. Adding a temporal 
component (synoptic scale) for more 
accurate projections

Next in the pipeline 
Creating synchronised and 
futurized datasets for training 
model to climate projections and 
not just reanalysis data.
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