LATENT DIFFUSION MODELS AND MULTI-CHANNEL DATA INTEGRATION

e—— A new road to high-resolution statistical downscaling
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OVERVIEW

To understand and mitigate climate change, we require high-resolution climate projections, especially when investigating DANRA (6] Total TRAINING Glantitative
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impacts on a local scale. This work is focused on developing models for statistical downscaling of climate model outputs for ReAnalysis, daily evaluation images (masked o
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Our approach is inspired by advancements made in Computer Vision, specifically in the areas of latent image generation and 1 ortary water Liyrua = Lsimpie + Aot [
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model accuracy and stability. The model attempts to map between two reanalysis products, ECMWEF Reanalysis v5 (ERA5) [5]
and the DANish atmospheric ReAnalysis (DANRA) [6], as a proof of concept, and future work will focus on creating a
synchronized training dataset between DANRA and realisations from the Regional Climate Model ensemble EURO-CORDEX (7], -

to develop a model for actual climate projection downscaling. s rconalysievs
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* Training: 9 years (1991-1999)

* Validation: 1 year (2000)
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This work is part of a broader effort to narrow the gap between global climate projections and local-scale analysis. It covers Bilinearly interpolated to Data randomly shifted [§ el -
the initial phase, where future advancements will focus on integrating this model with RCM and possibly GCM outputs instead \DANRA grid if:gﬁ@phica”y) for S JDANRA ] Generated
of reanalysis data, to explore ensemble downscaling methods. Our end-goal is to establish a robust pipeline for translating 13
global climate projections into more actionable local climate statistics. DATA Bl R S PRELIMINARY RESULTS
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Generative diffusion models [1] (2] work by computing a forward [CORDEX} ON THIS MODEL
diffusion process by iteratively adding gaussian noise with cosine t An ongoing effort is currently underway to speed up the training
sampling, then learning the reverse diffusion process with a U- ; process through the implementation of a Latent Diffusion
Net, and finally sampling through iterative denoising of random [ ERAS : | Model 4). Alongside this, the conditioning will be modified to
noise. —_ _——1 Diffusion incorporate a larger geographical and temporal domain for

A" model capturing large-scale atmospheric dynamics.
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D\ synchronised dataset between select EURO-CORDEX realisations
and DANRA, to create a training dataset useful for making climate
L . . . projection downscaling — for single models and full ensembles.
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