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Figure 3: Case 1 represents a single 3 m interlayer and Case 2 shows a single 0.3 m interlayer.
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Figure 1: Schematic diagram showing potential geological carbon storage sites and potential
leakage pathways (RIGBY, S. P. & ALSAYAH, A. 2024).
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Understanding and predicting the unusual migration of CO, plumes by evaluating their behaviour in depleted
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compartmentalised reservoirs with thin shale interlayers (Sleipner-like field). Further, investigating the physical, Figure 4: IK cross-sectional view of CO, plume migration behaviour after 100 years of
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Figure 2: Coupling processes involved in the simulation. boundary. Thus, an increased concentration gradient, in turn, caused increased diffusive loss in Case 1. permeability and capillary pressure and similar results were obtained. (




