




# Aerosol dust absorption - measurements with a reference instrument (PTAAM- $2\lambda$ ) and impact on the climate as measured in airborne JATAC/CAVA-AW 2021/2022 campaigns

Jesús Yus-Díez<sup>1</sup>, Luka Drinovec<sup>1,2</sup>, Marija Bervida<sup>1</sup>, Uroš Jagodič<sup>2</sup>, Blaž Žibert<sup>2</sup>, Matevž Lenarčič<sup>3</sup>, Eleni Marinou<sup>4</sup>, Peristera Paschou4, Nikolaos Siomos<sup>4</sup>, Holger Baars<sup>5</sup>, Ronny Engelmann<sup>5</sup>, Annett Skupin<sup>5</sup>, Cordula Zenk<sup>6,7</sup>, Thorsten Fehr<sup>8</sup>, Alastuey, Andrés<sup>9</sup>, Adolfo González-Romero<sup>9,10,11</sup>, Marco Pandolfi<sup>9</sup>, Carlos García-Pando<sup>10,12</sup>, Griša Močnik1, 2

<sup>1</sup>University of Nova Gorica, Ajdovščina, Slovenia; <sup>2</sup>Haze Instruments d.o.o., Ljubljana, Slovenia; <sup>3</sup>Aerovizija d.o.o, Vojnik, Slovenia; <sup>4</sup>IAASARS, National Observatory of Athens, Penteli, Greece; <sup>5</sup>Leibniz Institute for Tropospheric Research, Leipzig, Germany; <sup>6</sup>Ocean Science Centre Mindelo, Mindelo, Cape Verde; 7GEOMAR Helmholtz Centre for Ocean Research (IDAEA-CSIC), 10 Barcelona, Spain; 10 Barcelona Supercomputing of Environmental Assessment and water Research (IDAEA-CSIC), 10 Barcelona, Spain; 10 Barcelona Supercomputing of Environmental Assessment and water Research (IDAEA-CSIC), 10 Barcelona, Spain; 10 Barcelona Supercomputing of Environmental Assessment and water Research (IDAEA-CSIC), 10 Barcelona, Spain; 10 Barcelon Center (BSC), Barcelona, Spain, <sup>11</sup>Polytechnical University of Catalonia (UPC), environmental engineering doctoral programme, Barcelona, Spain; <sup>12</sup>Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

## **INTRODUCTION & METHODOLOGY**

#### Mineral dust lab resuspension measurements

- Carried out between University of Nova Gorica and Haze Instruments d.o.o.
- **LOCATION**: Chamber experiments at Haze d.o.o., Ljubljana
- **TIME**: May 2023
- MAIN OBJECTIVE: Obtain compensation schemes for filter photometers deriving the absorption coefficients of mineral dust particles and derive their mass absorption cross section with a reference absorption measurement instrument, the PTAAM- $2\lambda$ . The samples were obtained from FRAGMENT measurement campaigns between 2019 and 2022 from: Sahara (Morocco), Mojave desert (USA), Icelandic dust and Jordan.
- Instruments:
  - •Filter Photometers: Aethalometer (AE33) and CLAP
  - **Photo-thermal interferometer:** PTAAM-2λ
  - •Optical Particle Spectrometer (OPS): GRIMM OPC with bins from 0.253 nm to 35 nm

•Offline filters: weighted for measuring total concentration and mineralogical composition

Integrating Nephelometer: Aurora 4000 measuring forward and backward scattering

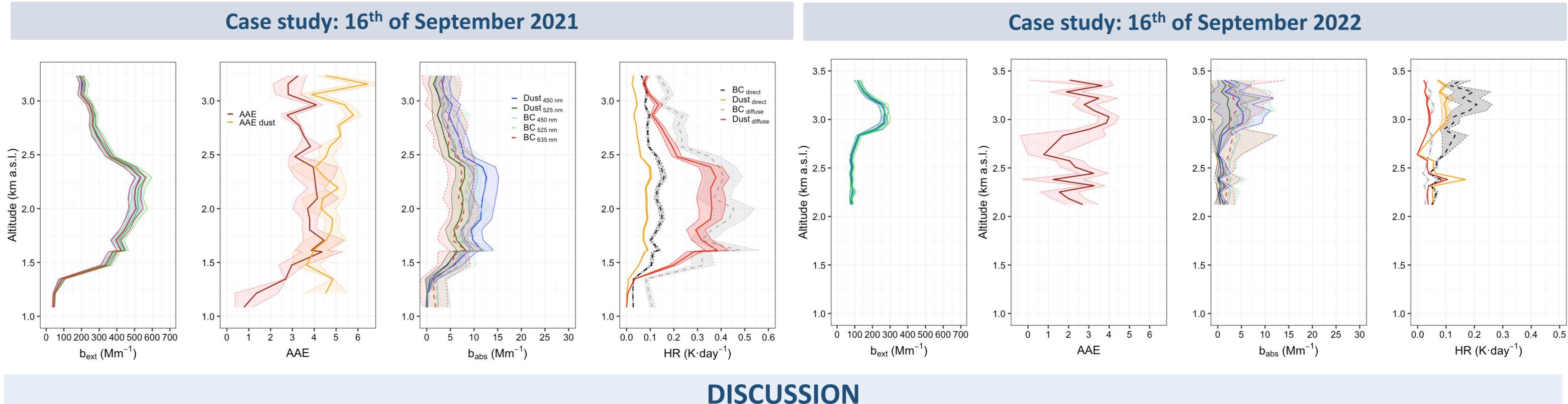
### **CAWA-AW CAMPAIGN OVERVIEW**

#### CAWA-AW (Calibration and Validation for Aeolus - Aerosols/Winds)

- part of JATAC campaign, carried out by University of Nova Gorica
- **LOCATION**: Cape Verde Islands
- TIME: September 2021 and September 2022
- MAIN OBJECTIVE: support Aeolus validation and calibration based on the in-situ airborne aerosol observations in the lower troposphere



[Left] Ultralight airplane Aerospool Advantic WT-10 equipped with inlets for fine and coarse aerosols and [Right] two Continuous Light Absorption Photometers for aerosol light absorption measurements at the fine and coarse fraction, a polar integrating nephelometer Ecotech Aurora 4000 for aerosol light scattering measurements, two optical particle counters for measuring the particle size distribution and additional meteorological sensors (CO2 sensor, RH).

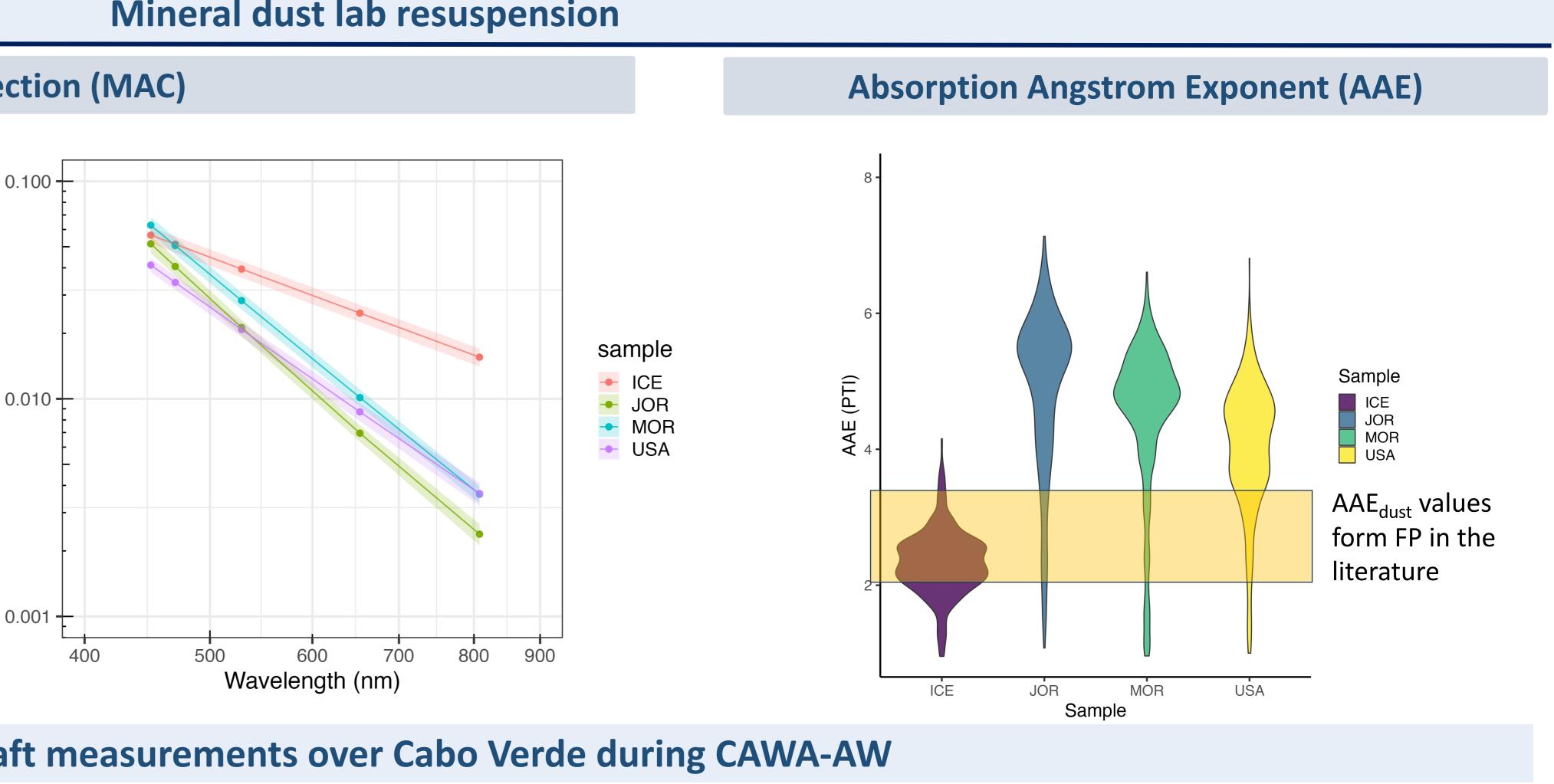

Acknowledgements: This research was supported by ESA's project JATAC/CAVA-AW "Support to the Aeolus Validation and Calibration through Airborne Aerosol In-situ Observations in the Tropics" (4000131931/20/NL/FF/an), ARIS programs P1-0385 "Remote sensing of atmospheric properties", IO-0033 "The Infrastructure Program of the University of Nova Gorica", and the European Union's Horizon Europe research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101081355.

\*Corresponding author email: jesus.yus@ung.si

# Mass absorption cross-section (MAC)

| C                                     |                       |                        |               |
|---------------------------------------|-----------------------|------------------------|---------------|
|                                       | MAC $(m^2g^{-1})$     |                        | Sample        |
|                                       | 808 nm                | 450 nm                 |               |
| n <sup>2</sup> g <sup>-1</sup> )      | 15.5x10 <sup>-3</sup> | 56.5x10 <sup>-3</sup>  | Iceland (ICE) |
| MAC (m <sup>2</sup> g <sup>-1</sup> ) | 2.3x10 <sup>-3</sup>  | 51.6x10 <sup>-3</sup>  | Jordan (JOR)  |
|                                       | 3.6x10 <sup>-3</sup>  | 62.8x10 <sup>-3</sup>  | Morocco (MOR) |
| 0                                     | 3.7x10 <sup>-3</sup>  | 41.16x10 <sup>-3</sup> | Mojave (USA)  |

### In-situ aircraft measurements over Cabo Verde during CAWA-AW




- et al., 2006, Caponi et al., 2017)
- AAE of dust measurements show much higher values than those obtained form FP in the literature
- Similar effect of mineral dust on the Heating Rate (HR) within a dust-loaded SAL, specially for the diffuse radiation.

EGU General Assembly Vienna, Austria, 14-19 April 2024

### RESULTS

### Mineral dust lab resuspension



MAC measurements without multiple scattering artefacts show slightly lower MAC values than those found in the literature and assumed by the models (Fialho

• This AAE measurements are similar to the AAE<sub>dust</sub> measurements obtained during aircraft measurements over dust plumes over Cabo Verde within the SAL