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2) Surrogate modeling
Design, evaluate and improve high fidelity models for pollutant 

dispersion in urban areas at microscale (≈100m)

B. Which model limitations?
⊖ Cost: One 200-s simulation ⇔ 20 000hCPU
⊖ High uncertainties (Dauxois et al. 2021):

Emulate the response surface of the LES model at reduced 
computing cost

A. Learning database of LES simulations
§ Sensitivity analysis: Wind velocity and direction ≫ rugosity, turbulence intensity, SGS model, …
§ Microclimatology to define realistic parameter ranges
§ Input parameter space sampling using the low-discrepancy Halton sequence

B. The POD-GPR surrogate model
§ Two-step approach:

(Nony et al. 2023)

§ New prediction: 

C. Validation
i. Validation on a test set of 40 LES shows near-maximum accuracy given the noise in the 

database (except for very high concentrations near the source)
ii. Computational costs: Prediction ≈ 0.03s versus Training ≈ 30s
iii. Surrogate model uncertainty = Model reduction uncertainty + Internal variability

Generation of an ensemble of 200 LES for varying wind 
boundary conditions (≈ 6 MhCPU)

Assimilate in situ measurements to estimate large-scale wind boundary conditions and improve LES concentration field prediction
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B. Errors modeling

b) State estimation (iso-0.01-ppm)

: Fric-on velocity

LES remains very uncertain despite its 
substantial computational cost

The POD-GPR surrogate 
model can accurately and 
efficiently replace the LES 
model while representing 
part of the uncertainties 

involved

3) Data assimilation for wind boundary condition parameters estimation

1) LES for atmospheric dispersion

ve
lo

ci
ty

 (m
.s
-1

)
co

nc
en

tra
tio

n 
(p

pm
)

⊕ Reduced modeling uncertainty
⊕ Better representation the effect of 

atmospheric variability on the plume

Large-scale meteorological forcing

Aleatory
uncertain)es

Epistemic
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Boundary 
condi)ons

Structural

Pollutant source
Urban canopy representation

- Subgrid scale modeling 
- Numerical scheme

i. Dimension reduction using Proper Orthogonal Decomposition (POD)
ii. Estimation of POD coefficients using Gaussian Process Regressors

Poster & materials

Background
error 𝐁

C. Assimilation of field measurements

o The use of a surrogate model enables real-time data assimilation and large ensemble size while also providing an estimation of the 
uncertainties involved

o The proposed data assimilation framework efficiently corrects wind boundary conditions and improve pollutant dispersion predictions
o Perspectives: i) state-parameter estimation, ii) optimal sensor placement, and iii) assimilation of plume images

4) Take-home messages

Observation 
error 𝐑

Model error

Robust and realistic errors models 
are necessary to ensures pertinent analysis

𝜎 𝛼!"#$%& = 25° 
𝜎 𝑢∗& = 0.09m.s-1

- Instrument error (unknown)
- Atmospheric internal variability

Microscale atmospheric 
internal variability

Errors when calibrating the 
model boundary conditions 
using distant 
meteorological stations 

Micro-
climatology=

POD-GPR uncertainty 
es8ma8on

- Surrogate modeling error
- Atmospheric internal variability
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a) Wind direction estimation

Estimation of the concentration at a point in the domain by the POD-GPR 
surrogate model as a function of the two input parameters (𝛼!"#$% , 𝑢∗)

c) Non-assimilated obs scatter plot
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The data assimilation 
framework accurately 

estimates wind 
direction…

Estimation is also 
improved for non-

assimilated observation 
locations
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Data assimilation can 
worsen the estimation 

where the LES model is 
biased

… which improves the 
accuracy of state 

prediction

d) Vertical profile example

Bootstrap
Es8ma8on

Large-eddy 
simulation of 
propylene 
dispersion in 
an idealized 
urban canopy. 
Reproduction 
of the 
#2681829 trial 
of the MUST 
field campaign 
(Yee et al. 
2004)

Inlet wind direction perturbation effect on mean velocity and mean 
concentration within the array of containers of the MUST field campaign

A. Why do we use Large-Eddy Simulation (LES)?
i. Explicitly takes into account the effect of the urban canopy on atmospheric flow
ii. Allows to track temporal evolution of the quantities of interest
iii. Resolves the largest turbulence scales

A. Data assimilation framework
§ System state: Mean concentration field
§ Control vector: Boundary condition parameters 𝛼$%&'(, 𝑢∗ as initial 

conditions quickly vanish at microscale (Defforge 2019)
§ Observations: 13 concentration measurements at different locations
§ Anamorphosis (Defforge et al. 2021)
§ Data assimilation method: Ensemble Kalman Filter (EnKF)
§ Ensemble size: 500 members (not a problem using the surrogate 

model)
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